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Abstract
Missing data is almost inevitable for various reasons in many applications. For hierarchical latent variable models, there
usually exist two kinds of missing data problems. One is manifest variables with incomplete observations, the other is
latent variables which cannot be observed directly. Missing data in manifest variables can be handled by different meth-
ods. For latent variables, there exist several kinds of partial least square (PLS) algorithms which have been widely used
to estimate the value of latent variables. In this paper, we not only combine traditional linear regression type PLS algo-
rithms with missing data handling methods, but also introduce quantile regression to improve the performances of PLS
algorithms when the relationships among manifest and latent variables are not fixed according to the explored quantile
of interest. Thus, we can get the overall view of variables’ relationships at different levels. The main challenges lie in how
to introduce quantile regression in PLS algorithms correctly and how well the PLS algorithms perform when missing
manifest variables occur. By simulation studies, we compare all the PLS algorithms with missing data handling methods in
different settings, and finally build a business sophistication hierarchical latent variable model based on real data.
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1 Introduction

In recent years, latent variable models have emerged as an

important method in various applications.124 The impor-

tance of modeling extra constructs representing other latent

variables instead of manifest variables has been recognized

by many experts and researchers.527 In this case, we con-

sider building a hierarchical latent variable model to estab-

lish high-level constructs that reflect other latent variables.

Hence, the hierarchical latent variable model (Figure 1)

usually contains two layers of latent variables.

Layer 1 in Figure 1 displays the relationship between

the first-order latent variables jj and manifest variables

xjh, (j= 1, 2, 3; h= 1, 2, 3). We use ljh as the factor load-

ing coefficients linking the manifest variables to the first-

order latent variable with error terms ejh. Hence, layer 1

can be written as the following Equation (1), which is the

so-called measurement model. Here, ejh is a random mea-

surement error variable with mean 0 and fixed variance

for the hth manifest variable xjh under the jth first-order

latent variable jj:

xjh =ljhjj + ejh ð1Þ

Layer 2 in Figure 1 displays the relationship between

the second-order latent variable h and first-order latent

variables jj, j= 1, 2, 3. bj are the path coefficients linking

the first-order latent variables to the second-order latent

variable with error terms dj. Hence, layer 2 can be written

as the Equation (2), which is the so-called structural model.

Here, dj is a random measurement error variable with

mean 0 and fixed variance for the jth first-order latent vari-

able jj:

jj =bjh+ dj ð2Þ
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In the hierarchical latent variable model, there exist two

kinds of variables, manifest variables and latent variables,

which may present two kinds of missing data problems.

The first missing data problem is about manifest vari-

ables with incomplete observations. This seems more

common in many data sets. In hierarchical latent variable

models, the relatively suitable and widely used missing

data handling methods include complete case analysis

(CC), mean value replacement (MEAN), and others.8

However, CC can diminish the number of observations

and likely leads to biased results. MEAN decreases the

variability of data and may reduce the possibility of find-

ing meaningful relationships. Multiple imputation (MI)

may lead to low computing efficiency and fractional impu-

tation (FI) needs at least part of the response variable

observations.9212 In this paper, we consider the weighted

k-nearest neighbors imputation method (KN) and k-nearest

neighbors imputation method based on median value

(KNM) along with CC and MEAN. In the case of catego-

rical variables, KNM uses the most frequent value instead

of the median value. KN means use a weighted average of

the k-nearest neighbors. Equation (3) is used to calculate

the weights. We denote w as the weights and �D(k, x) as
the Euclidean distance between the case with missing val-

ues x and the neighbor k:

w= exp (�D(k, x)) ð3Þ

The second missing data problem is latent variables that

cannot be observed directly. As one of the most widely

used methods to obtain the values of latent variables, par-

tial least square (PLS) methods are very powerful for

avoiding the joint normal distribution and independence

assumptions, and estimate path coefficients and loading

coefficients of the model, even if the sample size is rela-

tively small (such as 50).13226 There exist three well-

known PLS algorithms for estimating second-order (and

higher) latent variable models. These are the repeated indi-

cators algorithm (RI), the two-step algorithm (TS), and the

hybrid algorithm (H). All of these algorithms use tradi-

tional linear regression-like models and the weights are

estimated as simple or multiple linear regression para-

meters. Hence, they cannot show different levels of rela-

tionship between latent variables and manifest variables,

but only provide average effects. To improve upon the pre-

viously mentioned limitations, we consider quantile

regression estimation to expand the category of PLS. Here,

we consider linear quantile regression as QY (t)= xTbt,

8t 2 (0, 1), where QY (t) is the tth quantile of a response

variable Y , and x is the covariate vector.27,28 To capture

the changing relationships at the explored quantile of inter-

est and the overall view of the structural relationship

among all variables at different levels with missing data,

we propose two kinds of PLS algorithm with missing data

handling functions based on quantile regression.

Therefore, we compare all five PLS algorithms in different

models and settings.

Based on the previous, the main contributions or inno-

vations of this paper can be summarized as: (1) We pro-

pose quantile regression type hierarchical latent variable

models and corresponding PLS algorithms when parts of

manifest variables contain missing data. (2) We compare

different PLS algorithms with missing data (PLSMD) algo-

rithms based on both linear regression and quantile regres-

sion models under different settings. (3) We write R code

to accomplish different PLSMD algorithms with missing

data handling functions. (4) We use PLSMD algorithms to

build business sophistication hierarchical latent variable

models based on real data. Therefore, there exist chal-

lenges in how to apply quantile regression correctly to both

hierarchical latent variable models and PLS algorithms. As

we can see in Equations (1) and (2), the random errors ejh

Figure 1. Hierarchical latent variable model.
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and dj are required to have mean 0 and certain fixed var-

iances. When quantile regressions are introduced in hier-

archical latent variable models, such assumptions should

be considered first. As we know, one obvious advantage of

quantile regression is no extra distribution assumptions on

random errors. Therefore, we can hold the same assump-

tions about random errors for our new quantile regression

type hierarchical latent variable models. For PLSMD algo-

rithms based on quantile regression, we simply set a class

of quantile levels and use linear quantile regression to

accomplish the estimation of the weights or coefficients

and latent variables’ scores at each quantile level.

The rest of the paper is organized as follows. We

describe our PLSMD algorithms in Section 2, and conduct

a simulation study in Section 3. In Section 4 we apply all

five PLSMD algorithms with four different missing data

handling methods to build a business sophistication hier-

archical latent variable model based on real data from the

Global Innovation Index 2018.

2 Estimation with PLS algorithms
2.1 The general PLS procedure with missing data

As a useful tool for model investigation with a high level

of abstraction, PLS estimation specifies the estimates of

the latent variables to be weighted aggregates and scales

the estimated latent variable scores jj and h to unit var-

iance.13 When there are missing data in manifest variables,

we should diagnose all the manifest variables with missing

data first, choose appropriate and fast missing data han-

dling methods from those we mentioned before and imput-

ing the missing values. Here, we denote xnew
jh (contains the

existing values and imputed values) as the new manifest

variables with complete observations. Based on the com-

plete data, the parameter estimation of general PLS follows

a double approximation of the latent variables: external

estimation and internal estimation.26

In external estimation, jext
j is obtained as the product of

the block of manifest variables xnew
jh with the external

weights wjh (which represent the estimation of measure-

ment coefficients ljh). h is obtained as the product of the

block of the external estimation of first-order latent vari-

ables jext
j with the external weights wj:

jext
j =

XHj

h= 1

wjhx
new
jh ð4Þ

hext =
XJ

j= 1

wjj
ext
j ð5Þ

In internal estimation, jint
j is obtained as the product of

the external estimation of jext
j with the internal weights ej.

hint is obtained as the product of the external estimation of

hext with the internal weights e:

jint
j = ejj

ext
j ð6Þ

hint = ehext ð7Þ

To estimate the inner weights ej, we need to calculate

the correlation between each pair of external estimations

jext
j and hext and the sign of the correlation

ej =sign(cor(jext
j ,hext)), which is called the centroid

scheme.17

In the external weights-updating procedure, we need to

consider the kind of relationship with their latent variables

in Figure 1. The manifest variables are a reflection of the

latent variables. In other words, the manifest variables can

be treated as the response variable of the first-order latent

variables, and first-order latent variables can be treated as

the response variable of the second-order latent variable.

Modified by quantile regression, we get new estimates of

external weights by the following two equations:

wjh =argmin
XN

i= 1

fxnew
jh, i � jint

j, iwjh, ig2 ð8Þ

wj =argmin
XN

i= 1

fjext
j, i � hintwj, ig2 ð9Þ

The weight estimation is an iterative procedure between

the external estimation and internal estimation. The whole

PLS procedure will not stop until it reaches the maximum

number of iterations or the change in the outer weights

between two consecutive iterations is smaller than this

stop criterion value at the same time.20,21 Maximum itera-

tions represents the maximum number of iterations that

will be used for calculating the PLS results. Maximum

iterations should be sufficiently large and stop criterion

should be sufficiently small. In this paper, maximum itera-

tions is set to 200 and minimum change in the external

weights between two consecutive iterations is less than

10�5.
Algorithm 1 shows the steps of the general PLSMD

procedure for the hierarchical latent variable model.

2.2 The PLSMD algorithms
2.2.1 Linear regression-based PLSMD algorithms: RIMD,
TSMD, and HMD. The RI approach, TS approach, and H

approach algorithms are all based on linear regression to

establish structural equation models or hierarchical latent

variable models, which are constructed by Equations (1)

and (2).29231 One of the main differences in these algo-

rithms lies in the assignment patterns of manifest vari-

ables. RI assigns all the manifest variables of the first-

order latent variables to the second-order latent variable at

the same time. TS uses manifest variables only for the

first-order latent variable and then uses the estimated

scores of first-order latent variables for the second-order

Cheng 827



latent variable. H randomly splits the manifest variables so

that part of them are assigned to first-order latent variables

while the others are assigned to the second-order latent

variable. A disadvantage of RI is a possible bias of the

estimates because it relates variables of the same type. TS

estimates any second-order construct in stage 2 without

considering the first-order latent variable scores in stage 1.

In H, all manifest variables are randomly assigned to first-

and second-order latent variables without replacement,

which may lead to the uncertainty of structural relation-

ship each time. In this paper, we combine missing data

handling methods with the previously mentioned three

PLS algorithms and denote them as RIMD, TSMD, and

HMD, respectively.

2.2.2 Quantile regression-based PLSMD algorithms: PLSMDo

and PLSMDT. All of the previously mentioned three

PLSMD algorithms are based on linear regression models,

which offer conditional mean views of the relationship

between the response and its covariates. However, quantile

regression, which is now an indispensable and versatile

tool for statistical research, broadens conditional mean

views by allowing covariate effects to be examined at dif-

ferent quantiles and makes the estimates more resistant to

outliers.32,33 Therefore, we consider the following two

PLSMD algorithms: one-stage PLS algorithm based on

quantile regression with missing data handling methods

(PLSMDO) and two-stage PLS algorithm based on quan-

tile regression with missing data handling methods

(PLSMDT).

PLSMDO still contains three parts: external estimation,

internal estimation, and external weights updating.

PLSMDO is different from the PLSMD algorithm in

Section 2.1 in two respects. The first difference is rebuild-

ing the hierarchical latent variable based on quantile

regression. Thus models (1) and (2) can be modified as

Qxnew
jh
(t)=ljh, tjj and Qjj

(t)=bj, th, respectively. Where

Qxnew
jh
(t) stands for the tth quantile of the manifest vari-

ables xnew
jh , Qjj

(t) stands for the tth quantile of the first-

order latent variables jj. In addition, we denote bj, t as the

path coefficient at quantile level t, ljh, t as the factor load-

ing coefficient at quantile level t. The second difference

lies in the external weights-updating procedure. Instead of

using the least square method, we take rt(u)=
u(t � I(u \ 0)) as the loss function to calculate the exter-

nal weights in each iteration. Modified by quantile regres-

sion, we get new estimates of external weights by

wjh, t =argmin
PN

i= 1 rtfxnew
jh, i � jint

j, iwjh, t, ig and wj, t =
argmin

PN
i= 1 rtfjext

j, i � hintwj, t, ig for all t 2 (0, 1).
PLSMDT is just like the existing TSMD. In the first

step, we estimate the first-order latent variable scores by

using the first step of the existing TS approach. That is,

we can get the score of a first-order latent variable by tak-

ing the first principal component of its indicators and the

principal component analysis (PCA) scores of first-order

latent variables are subsequently used as indicators for the

second-order latent variable in a separate hierarchical

latent variable model. In the second step, we modify the

existing step 2 by Qjj
(t)=bj, th, 8t 2 (0, 1), where

Qjj
(t) stands for the tth quantile of the first-order latent

variables jj. Different from PLSMDO, jj are manifest

variables instead of latent variables in PLSMDT, and h
can be treated as the first-order latent variable of jj. The

parameter estimation is similar as PLSMDO. Modified by

quantile regression instead of traditional linear regression,

we get new estimates of external weights by the following:

wj, t =argmin
PN

i= 1 rt fjext
j, i � hintwj, t, ig, 8t 2 (0, 1).

3 Simulations
3.1 Model

Here we consider the following two equations to generate

data. We refer to Ciavolino and Nitti’s simulation plan

and assume the path coefficients are 0.8 and loading coef-

ficients are 0.7.26 The second-order latent variable h fol-

lows a standard normal distribution N (0, 1). The error

term ejh follows a continuous uniform U (� 1, 1). The

error term dj follows a univariate normal distribution

Algorithm 1. The general PLS procedure with missing data (PLSMD) for hierarchical latent variable model

Step 1 Handle missing data.
Step 1.1 Select manifest variables with missing data and calculate missing rates.
Step 1.2 Choose appropriate and fast imputation methods to handle missing values.

Step 2 Initialize outer weights w(1)
jh and w(1)

j .
Step 3 External estimation. Use Equations (4) and (5) to calculate jext,(I)

j , hext,(I) for the Ith iteration.
Step 4 Internal estimation.

Step 4.1 Choose a centroid scheme and calculate e(I)
j .

Step 4.2 Use Equations (6) and (7) to calculate jint,(I)
j , hint,(I) for the Ith iteration.

Step 5 Update the external weights under a set of quantile levels.
Step 5.1 Define a set of quantile levels.
Step 5.2 Estimate the external weights among first-order latent variables and manifest variables by Equation (8).
Step 5.3 Estimate the external weights among second-order and first-order latent variables by Equation (9).

Step 6 Repeat steps 3–5 until the stop criterion or the maximum number of iterations are reached.

828 Simulation: Transactions of the Society for Modeling and Simulation International 96(10)



N (0,Vardj
). Where J is the number of first-order latent

variables and Hj is the number of observed variables for

the jth first-order latent variable jj:

xjh = 0:7jj + ejh, 8j= 1, :::, J , h= 1, :::,Hj ð10Þ

jj = 0:8h+ dj, 8j= 1, :::, J ð11Þ

Here we use R2 as the ratio of Var(model) to Var(total).
And we calculate Vardj

by R2:

R2 =
Var(model)

Var(total)
=

Var(model)

Var(model)+Var(error)

=
Var(bjh)

Var(bjh)+Var(dj)
=

bj
2Var(h)

bj
2Var(h)+Var(dj)

ð12Þ

Hence we get Vardj
by the following equation:

Vardj
=bj

2Var(h)(
1

R2
� 1) ð13Þ

Here, bj equals 0.8, Var(h) equals 1, and R2 equals 0.8.

Hence, we can calculate Vardj
as (1=R2 � 1)b2

j = 0:16.
Finally, we can generate the first-order latent variable

scores and all the manifest variables according to models

(10) and (11).

3.2 Settings

To investigate the performance of PLSMD algorithms with

different missing data handling methods, we mainly con-

sider the following three aspects.

1. Balanced model or unbalanced model (B or U).

We design different numbers of manifest variables

and also consider whether they are assigned evenly

to first-order latent variables or not. If the manifest

variables are assigned evenly to first-order latent

variables (balanced model), we set 15 manifest

variables in total and assign 5 manifest variables

for each first-order latent variable. If the manifest

variables are not assigned evenly to first-order

latent variables (unbalanced model), we set 18

manifest variables in total and assign 4, 6, and 8

manifest variables for each first-order latent vari-

able respectively. Hence, we get the following two

settings:

S1:1 : Balanced model (B): (5, 5, 5)

S1:2 : Unbalanced model (U): (4, 6, 8)

2. Number of missing variables (NMV).

We set different numbers of manifest variables

with missing data for both the balanced model and

the unbalanced model. Here we assume that there

are three manifest variables with incomplete obser-

vations first, and then six manifest variables with

incomplete observations. For the balanced/unba-

lanced models, we assign one manifest variable

with incomplete observations for each first-order

latent variable first, and then assign two manifest

variables with incomplete observations for each

first-order latent variable:

S2:1 : One manifest variable with missing data for

each first-order latent variable (O)

S2:2 : Two manifest variables with missing data

for each first-order latent variable (T)

3. Missing rates (MR).

Here, part of the manifest variables are missing at

random (MAR) and the other manifest variables

are completely observed. We define

p(dijxi)= maxf0, ½(xi + 1:65)=10�1=20g as the

missing probability function when the missing rate

is approximately 0.1 and

p(dijxi)= maxf0, ½(xi + 1:2)=10�1=20g as the

missing probability function when the missing rate

is approximately 0.2:

S3:1 : Missing rate equals 10% (0.1)

S3:2 : Missing rate equals 20% (0.2)

Based on these aspects, we conducted the following

numerical investigations and simulations (see Table 1). In

all investigations, we choose the Monte Carlo sample size

as 200. The methods are the RI approach (RIMD), two-

step approach (TSMD), hybrid approach (HMD), new

two-stage PLS algorithm (PLSMDT), and new one-stage

PLS algorithm (PLSMDO). According to all the settings

and methods, we mainly compared the following two

aspects:

1. We compared the estimation accuracy and effi-

ciency of path coefficients of different algorithms

with different missing data handling methods.

2. We compared the latent variables’ prediction accu-

racy of different algorithms with different missing

data handling methods.

Table 1. Simulation plan.

Balanced or unbalanced NMV MR

Simu. 01 Balanced 1 0.1
Simu. 02 Balanced 1 0.2
Simu. 03 Balanced 2 0.1
Simu. 04 Balanced 2 0.2
Simu. 05 Unbalanced 1 0.1
Simu. 06 Unbalanced 1 0.2
Simu. 07 Unbalanced 2 0.1
Simu. 08 Unbalanced 2 0.2

MR, missing rates; NMV, number of missing manifest variables.
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3.3 Results
3.3.1 Comparisons of path coefficients’ estimation accuracy
and efficiency. Tables 2–5 present the mean biases, stan-

dard errors, and mean square errors of the estimated path

coefficients using RIMD, TSMD, HMD, PLSMDO and

PLSMDT under Simu:01� 02, Simu:03� 04,

Simu:05� 06, and Simu:07� 08, respectively from 200

Monte Carlo replicates with sample size 500. We also run

Table 2. Mean biases (MB), standard errors (SE), and mean squared errors (MSE) of the estimated path coefficients using RIMD,
TSMD, HMD, PLSMDO, and PLSMDTunder Simu.01 and 02 from 200 Monte Carlo replicates with sample size 500.

CC MEAN KN KNM

MB SE MSE MB SE MSE MB SE MSE MB SE MSE

Simu. 01
0.074 0.015 0.006 0.086 0.011 0.008 0.089 0.011 0.008 0.089 0.011 0.008

RIMD 0.072 0.013 0.005 0.085 0.010 0.007 0.088 0.010 0.008 0.088 0.011 0.008
0.071 0.015 0.005 0.084 0.011 0.007 0.087 0.011 0.008 0.087 0.011 0.008
0.074 0.012 0.006 0.085 0.010 0.007 0.089 0.010 0.008 0.089 0.010 0.008

TSMD 0.072 0.012 0.005 0.084 0.010 0.007 0.088 0.010 0.008 0.087 0.010 0.008
0.071 0.013 0.005 0.083 0.010 0.007 0.087 0.010 0.008 0.087 0.010 0.008

− 0.069 0.024 0.005 − 0.051 0.018 0.003 − 0.042 0.018 0.002 − 0.042 0.018 0.002
HMD − 0.069 0.025 0.005 − 0.049 0.019 0.003 − 0.037 0.020 0.002 − 0.038 0.020 0.002

− 0.072 0.024 0.006 − 0.052 0.019 0.003 − 0.043 0.019 0.002 − 0.043 0.019 0.002
0.073 0.031 0.006 0.080 0.024 0.007 0.086 0.024 0.008 0.086 0.024 0.008

PLSMDO25
0.066 0.028 0.005 0.074 0.023 0.006 0.081 0.024 0.007 0.080 0.023 0.007
0.067 0.031 0.005 0.075 0.026 0.006 0.081 0.024 0.007 0.081 0.024 0.007
0.073 0.024 0.006 0.086 0.019 0.008 0.089 0.018 0.008 0.089 0.018 0.008

PLSMDO50
0.072 0.026 0.006 0.083 0.019 0.007 0.088 0.019 0.008 0.088 0.018 0.008
0.071 0.028 0.006 0.083 0.020 0.007 0.087 0.019 0.008 0.087 0.019 0.008
0.072 0.031 0.006 0.080 0.024 0.007 0.085 0.024 0.008 0.086 0.024 0.008

PLSMDT25
0.065 0.028 0.005 0.076 0.023 0.006 0.080 0.024 0.007 0.080 0.024 0.007
0.067 0.031 0.006 0.076 0.026 0.006 0.081 0.024 0.007 0.081 0.024 0.007
0.073 0.023 0.006 0.086 0.019 0.008 0.089 0.017 0.008 0.088 0.018 0.008

PLSMDT50
0.073 0.026 0.006 0.084 0.018 0.007 0.088 0.019 0.008 0.088 0.018 0.008
0.072 0.028 0.006 0.082 0.020 0.007 0.087 0.019 0.008 0.087 0.019 0.008

Simu. 02
0.060 0.018 0.004 0.085 0.011 0.007 0.088 0.011 0.008 0.088 0.011 0.008

RIMD 0.058 0.018 0.004 0.083 0.011 0.007 0.086 0.011 0.008 0.086 0.011 0.008
0.058 0.019 0.004 0.082 0.012 0.007 0.085 0.012 0.007 0.085 0.012 0.007
0.060 0.015 0.004 0.083 0.010 0.007 0.088 0.010 0.008 0.088 0.010 0.008

TSMD 0.057 0.015 0.004 0.082 0.010 0.007 0.086 0.010 0.008 0.086 0.010 0.008
0.056 0.017 0.003 0.081 0.010 0.007 0.085 0.010 0.007 0.085 0.010 0.007

− 0.101 0.029 0.011 − 0.059 0.019 0.004 − 0.049 0.018 0.003 − 0.049 0.018 0.003
HMD − 0.098 0.031 0.011 − 0.056 0.020 0.003 − 0.042 0.020 0.002 − 0.042 0.020 0.002

− 0.102 0.030 0.011 − 0.061 0.020 0.004 − 0.050 0.019 0.003 − 0.050 0.019 0.003
0.052 0.037 0.004 0.070 0.024 0.005 0.078 0.025 0.007 0.078 0.025 0.007

PLSMDO25
0.047 0.034 0.003 0.064 0.024 0.005 0.073 0.024 0.006 0.073 0.024 0.006
0.050 0.038 0.004 0.066 0.028 0.005 0.073 0.027 0.006 0.075 0.027 0.006
0.061 0.029 0.005 0.084 0.020 0.007 0.088 0.020 0.008 0.087 0.019 0.008

PLSMDO50
0.059 0.029 0.004 0.083 0.019 0.007 0.087 0.018 0.008 0.088 0.018 0.008
0.056 0.033 0.004 0.080 0.020 0.007 0.085 0.020 0.008 0.086 0.020 0.008
0.052 0.036 0.004 0.070 0.025 0.005 0.077 0.024 0.006 0.077 0.025 0.006

PLSMDT25
0.047 0.034 0.003 0.065 0.023 0.005 0.071 0.024 0.006 0.072 0.023 0.006
0.050 0.037 0.004 0.067 0.028 0.005 0.073 0.027 0.006 0.074 0.027 0.006
0.060 0.029 0.004 0.083 0.019 0.007 0.088 0.019 0.008 0.087 0.019 0.008

PLSMDT50
0.060 0.029 0.004 0.082 0.019 0.007 0.088 0.018 0.008 0.088 0.018 0.008
0.055 0.033 0.004 0.079 0.020 0.007 0.085 0.020 0.008 0.086 0.019 0.008

CC, complete case analysis; HMD hybrid algorithm with missing data handling methods; KN, weighted k-nearest neighbors imputation method;

KNM, k-nearest neighbors imputation method based on median value; MEAN, mean imputation method; PLSMDO25
and PLSMDO50

, one-stage PLS

algorithm with missing data handling methods at quantile levels 0.25 and 0.50; PLSMDT25
and PLSMDT50

, two-stage PLS algorithm with missing data

handling methods at quantile levels 0.25 and 0.50; RIMD, repeated indicators algorithm with missing data handling methods; TSMD, two-step

algorithm with missing data handling methods.
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the same simulation process with an increased sample size

of 1000, and obtain very similar results. For brevity, we

do not report these in the paper. For PLSMDO and

PLSMDT, we give the estimated path coefficients at quan-

tile levels 0.25 and 0.50. The balanced model means each

first-order latent variable has five manifest variables. The

unbalanced model means the first-order latent variables

have four, six, and eight manifest variables, respectively.

According to Tables 2–5, we get the following main

conclusions:

Table 3. Mean biases (MB), standard errors (SE), and mean squared errors (MSE) of the estimated path coefficients using RIMD,
TSMD, HMD, PLSMDO, and PLSMDTunder Simu.03 and 04 from 200 Monte Carlo replicates with sample size 500.

CC MEAN KN KNM

MB SE MSE MB SE MSE MB SE MSE MB SE MSE

Simu. 03
0.068 0.019 0.005 0.083 0.011 0.007 0.089 0.011 0.008 0.088 0.011 0.008

RIMD 0.063 0.019 0.004 0.080 0.011 0.007 0.087 0.011 0.008 0.086 0.011 0.008
0.065 0.019 0.005 0.080 0.012 0.007 0.086 0.012 0.008 0.086 0.012 0.008
0.067 0.015 0.005 0.081 0.010 0.007 0.088 0.010 0.008 0.088 0.010 0.008

TSMD 0.063 0.017 0.004 0.080 0.010 0.006 0.087 0.010 0.008 0.087 0.010 0.008
0.064 0.017 0.004 0.079 0.011 0.006 0.086 0.011 0.008 0.086 0.011 0.007

− 0.080 0.030 0.007 − 0.063 0.019 0.004 − 0.042 0.019 0.002 − 0.043 0.019 0.002
HMD − 0.087 0.032 0.009 − 0.065 0.021 0.005 − 0.044 0.021 0.002 − 0.045 0.021 0.002

− 0.086 0.029 0.008 − 0.073 0.020 0.006 − 0.052 0.019 0.003 − 0.052 0.019 0.003
0.060 0.040 0.005 0.067 0.024 0.005 0.075 0.026 0.006 0.076 0.026 0.006

PLSMDO25
0.057 0.040 0.005 0.063 0.025 0.005 0.072 0.023 0.006 0.073 0.023 0.006
0.058 0.038 0.005 0.064 0.027 0.005 0.074 0.025 0.006 0.074 0.026 0.006
0.067 0.029 0.005 0.079 0.020 0.007 0.089 0.019 0.008 0.088 0.020 0.008

PLSMDO50
0.065 0.031 0.005 0.083 0.020 0.007 0.089 0.019 0.008 0.089 0.020 0.008
0.064 0.032 0.005 0.079 0.020 0.007 0.088 0.019 0.008 0.088 0.019 0.008
0.060 0.040 0.005 0.068 0.024 0.005 0.076 0.025 0.006 0.077 0.026 0.007

PLSMDT25
0.056 0.039 0.005 0.063 0.025 0.005 0.072 0.023 0.006 0.073 0.023 0.006
0.059 0.036 0.005 0.064 0.026 0.005 0.074 0.025 0.006 0.074 0.025 0.006
0.067 0.028 0.005 0.079 0.020 0.007 0.089 0.019 0.008 0.088 0.019 0.008

PLSMDT50
0.065 0.032 0.005 0.082 0.019 0.007 0.089 0.019 0.008 0.089 0.020 0.008
0.064 0.032 0.005 0.079 0.019 0.007 0.088 0.018 0.008 0.087 0.019 0.008

Simu. 04
0.048 0.026 0.003 0.079 0.012 0.006 0.085 0.012 0.007 0.085 0.012 0.007

RIMD 0.042 0.025 0.002 0.076 0.012 0.006 0.082 0.012 0.007 0.082 0.012 0.007
0.045 0.026 0.003 0.076 0.013 0.006 0.082 0.013 0.007 0.082 0.013 0.007
0.047 0.021 0.003 0.076 0.011 0.006 0.085 0.011 0.007 0.085 0.011 0.007

TSMD 0.041 0.022 0.002 0.074 0.011 0.006 0.083 0.011 0.007 0.082 0.011 0.007
0.043 0.023 0.002 0.074 0.012 0.006 0.082 0.012 0.007 0.082 0.012 0.007

− 0.123 0.040 0.017 − 0.080 0.020 0.007 − 0.056 0.020 0.004 − 0.056 0.020 0.004
HMD − 0.131 0.042 0.019 − 0.082 0.022 0.007 − 0.058 0.022 0.004 − 0.059 0.022 0.004

− 0.131 0.041 0.019 − 0.101 0.022 0.011 − 0.073 0.022 0.006 − 0.073 0.022 0.006
0.035 0.051 0.004 0.050 0.025 0.003 0.061 0.025 0.004 0.063 0.025 0.005

PLSMDO25
0.028 0.053 0.004 0.044 0.027 0.003 0.056 0.025 0.004 0.055 0.025 0.004
0.029 0.050 0.003 0.042 0.028 0.003 0.057 0.027 0.004 0.057 0.026 0.004
0.047 0.038 0.004 0.076 0.021 0.006 0.084 0.019 0.007 0.084 0.020 0.007

PLSMDO50
0.046 0.042 0.004 0.077 0.022 0.006 0.087 0.021 0.008 0.086 0.020 0.008
0.040 0.044 0.004 0.075 0.021 0.006 0.082 0.020 0.007 0.083 0.021 0.007
0.034 0.051 0.004 0.049 0.025 0.003 0.060 0.024 0.004 0.061 0.024 0.004

PLSMDT25
0.028 0.052 0.003 0.044 0.026 0.003 0.054 0.025 0.004 0.054 0.025 0.004
0.030 0.048 0.003 0.043 0.028 0.003 0.054 0.027 0.004 0.054 0.026 0.004
0.046 0.038 0.004 0.076 0.021 0.006 0.084 0.019 0.007 0.084 0.019 0.007

PLSMDT50
0.048 0.041 0.004 0.077 0.022 0.006 0.087 0.020 0.008 0.086 0.020 0.008
0.040 0.044 0.003 0.075 0.021 0.006 0.083 0.021 0.007 0.083 0.020 0.007

CC, complete case analysis; HMD hybrid algorithm with missing data handling methods; KN, weighted k-nearest neighbors imputation method;

KNM, k-nearest neighbors imputation method based on median value; MEAN, mean imputation method; PLSMDO25
and PLSMDO50

, one-stage PLS

algorithm with missing data handling methods at quantile levels 0.25 and 0.50; PLSMDT25
and PLSMDT50

, two-stage PLS algorithm with missing data

handling methods at quantile levels 0.25 and 0.50; RIMD, repeated indicators algorithm with missing data handling methods; TSMD, two-step

algorithm with missing data handling methods.
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1. All models under Simu:01� 08.

Based on Tables 2–5, the biases of the estimated

path coefficients using TSMD, PLSMDO, and

PLSMDT are comparable, no matter which missing

data handling method we choose. At quantile level

0.25, the biases of PLSMDO and PLSMDT are

slightly smaller than other PLSMD algorithms.

The variances of RIMD and TSMD are always

smaller than other PLSMD algorithms for each

missing data handling method. The estimated

Table 4. Mean biases (MB), standard errors (SE), and mean squared errors (MSE) of the estimated path coefficients using RIMD,
TSMD, HMD, PLSMDO, and PLSMDTunder Simu.05 and 06 from 200 Monte Carlo replicates with sample size 500.

CC MEAN KN KNM

MB SE MSE MB SE MSE MB SE MSE MB SE MSE

Simu. 05
0.027 0.017 0.001 0.039 0.014 0.002 0.045 0.014 0.002 0.045 0.014 0.002

RIMD 0.078 0.014 0.006 0.090 0.010 0.008 0.092 0.010 0.009 0.092 0.010 0.009
0.116 0.012 0.014 0.127 0.008 0.016 0.128 0.008 0.016 0.128 0.008 0.016
0.069 0.012 0.005 0.080 0.010 0.006 0.084 0.010 0.007 0.084 0.010 0.007

TSMD 0.079 0.013 0.006 0.091 0.009 0.008 0.094 0.009 0.009 0.094 0.009 0.009
0.083 0.013 0.007 0.095 0.010 0.009 0.098 0.010 0.010 0.098 0.010 0.010

− 0.108 0.026 0.012 − 0.085 0.021 0.008 − 0.073 0.022 0.006 − 0.073 0.022 0.006
HMD − 0.049 0.024 0.003 − 0.026 0.018 0.001 − 0.019 0.018 0.001 − 0.019 0.019 0.001

− 0.003 0.020 0.000 0.014 0.016 0.000 0.020 0.016 0.001 0.019 0.016 0.001
0.064 0.030 0.005 0.070 0.025 0.005 0.076 0.022 0.006 0.076 0.023 0.006

PLSMDO25
0.075 0.028 0.006 0.086 0.022 0.008 0.090 0.023 0.009 0.090 0.023 0.009
0.080 0.028 0.007 0.088 0.022 0.008 0.094 0.023 0.009 0.093 0.023 0.009
0.069 0.027 0.005 0.080 0.021 0.007 0.085 0.021 0.008 0.085 0.021 0.008

PLSMDO50
0.082 0.025 0.007 0.091 0.021 0.009 0.094 0.020 0.009 0.095 0.020 0.009
0.083 0.026 0.008 0.095 0.019 0.009 0.097 0.019 0.010 0.098 0.019 0.010
0.064 0.030 0.005 0.071 0.024 0.006 0.076 0.022 0.006 0.076 0.022 0.006

PLSMDT25
0.075 0.028 0.006 0.086 0.022 0.008 0.089 0.022 0.008 0.089 0.022 0.008
0.080 0.028 0.007 0.089 0.023 0.008 0.093 0.023 0.009 0.093 0.023 0.009
0.068 0.027 0.005 0.080 0.020 0.007 0.085 0.020 0.008 0.086 0.021 0.008

PLSMDT50
0.082 0.025 0.007 0.091 0.020 0.009 0.094 0.020 0.009 0.094 0.020 0.009
0.083 0.026 0.008 0.095 0.018 0.009 0.098 0.019 0.010 0.098 0.019 0.010

Simu. 06
0.009 0.021 0.001 0.035 0.015 0.001 0.042 0.014 0.002 0.042 0.014 0.002

RIMD 0.064 0.019 0.004 0.088 0.010 0.008 0.091 0.010 0.008 0.091 0.010 0.008
0.108 0.014 0.012 0.127 0.008 0.016 0.128 0.008 0.016 0.128 0.008 0.016
0.055 0.014 0.003 0.077 0.010 0.006 0.083 0.010 0.007 0.083 0.010 0.007

TSMD 0.066 0.016 0.005 0.089 0.009 0.008 0.093 0.009 0.009 0.093 0.009 0.009
0.070 0.015 0.005 0.094 0.010 0.009 0.097 0.010 0.009 0.097 0.010 0.009

− 0.140 0.031 0.020 − 0.091 0.022 0.009 − 0.077 0.022 0.006 − 0.077 0.022 0.006
HMD − 0.076 0.030 0.007 − 0.029 0.019 0.001 − 0.022 0.019 0.001 − 0.022 0.019 0.001

− 0.027 0.025 0.001 0.008 0.016 0.000 0.015 0.016 0.000 0.015 0.016 0.000
0.045 0.039 0.004 0.059 0.025 0.004 0.069 0.024 0.005 0.070 0.024 0.005

PLSMDO25
0.059 0.035 0.005 0.079 0.024 0.007 0.084 0.024 0.008 0.084 0.024 0.008
0.066 0.032 0.005 0.084 0.022 0.008 0.089 0.022 0.008 0.089 0.022 0.008
0.054 0.030 0.004 0.077 0.021 0.006 0.083 0.020 0.007 0.084 0.019 0.007

PLSMDO50
0.068 0.030 0.006 0.090 0.020 0.008 0.093 0.020 0.009 0.093 0.019 0.009
0.069 0.031 0.006 0.093 0.019 0.009 0.097 0.019 0.010 0.097 0.019 0.010
0.046 0.037 0.003 0.060 0.026 0.004 0.068 0.024 0.005 0.069 0.024 0.005

PLSMDT25
0.059 0.036 0.005 0.079 0.023 0.007 0.083 0.024 0.007 0.084 0.024 0.008
0.065 0.032 0.005 0.084 0.021 0.008 0.088 0.022 0.008 0.088 0.022 0.008
0.055 0.030 0.004 0.077 0.020 0.006 0.084 0.020 0.007 0.084 0.019 0.007

PLSMDT50
0.069 0.029 0.006 0.090 0.020 0.008 0.093 0.020 0.009 0.093 0.020 0.009
0.069 0.031 0.006 0.093 0.019 0.009 0.097 0.019 0.010 0.097 0.019 0.010

CC, complete case analysis; HMD hybrid algorithm with missing data handling methods; KN, weighted k-nearest neighbors imputation method;

KNM, k-nearest neighbors imputation method based on median value; MEAN, mean imputation method; PLSMDO25
and PLSMDO50

, one-stage PLS

algorithm with missing data handling methods at quantile levels 0.25 and 0.50; PLSMDT25
and PLSMDT50

, two-stage PLS algorithm with missing data

handling methods at quantile levels 0.25 and 0.50; RIMD, repeated indicators algorithm with missing data handling methods; TSMD, two-step

algorithm with missing data handling methods.
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results with KN and KNM are very similar in all

simulations. Except HMD, the mean biases of

other PLSMD algorithms with MEAN, KN, and

KNM are larger than CC, but their variances are

.smaller.

2. Balanced models under Simu:01� 04.

According to Tables 2 and 3, the biases of the esti-

mated path coefficients using RIMD, TSMD,

PLSMDO, and PLSMDT are comparable. At quan-

tile level 0.25, the biases of PLSMDO and

Table 5. Mean biases (MB), standard errors (SE), and mean squared errors (MSE) of the estimated path coefficients using RIMD,
TSMD, HMD, PLSMDO, and PLSMDTunder Simu.07–08 from 200 Monte Carlo replicates with sample size 500.

CC MEAN KN KNM

MB SE MSE MB SE MSE MB SE MSE MB SE MSE

Simu. 07
0.018 0.022 0.001 0.030 0.014 0.001 0.042 0.014 0.002 0.042 0.014 0.002

RIMD 0.069 0.019 0.005 0.087 0.011 0.008 0.092 0.010 0.008 0.091 0.010 0.008
0.112 0.014 0.013 0.127 0.008 0.016 0.129 0.008 0.017 0.129 0.008 0.017
0.062 0.016 0.004 0.074 0.010 0.006 0.083 0.010 0.007 0.083 0.010 0.007

TSMD 0.072 0.016 0.005 0.088 0.010 0.008 0.093 0.009 0.009 0.093 0.009 0.009
0.076 0.015 0.006 0.092 0.010 0.009 0.097 0.010 0.010 0.097 0.010 0.009

− 0.123 0.031 0.016 − 0.104 0.022 0.011 − 0.078 0.022 0.007 − 0.079 0.022 0.007
HMD − 0.063 0.031 0.005 − 0.037 0.019 0.002 − 0.022 0.019 0.001 − 0.023 0.019 0.001

− 0.014 0.025 0.001 0.009 0.016 0.000 0.018 0.016 0.001 0.018 0.016 0.001
0.055 0.034 0.004 0.059 0.026 0.004 0.068 0.026 0.005 0.068 0.026 0.005

PLSMDO25
0.064 0.035 0.005 0.074 0.023 0.006 0.082 0.021 0.007 0.081 0.022 0.007
0.070 0.036 0.006 0.083 0.023 0.007 0.089 0.022 0.008 0.089 0.022 0.008
0.063 0.030 0.005 0.072 0.022 0.006 0.083 0.020 0.007 0.083 0.020 0.007

PLSMDO50
0.073 0.031 0.006 0.090 0.019 0.008 0.097 0.019 0.010 0.096 0.019 0.010
0.075 0.029 0.007 0.095 0.019 0.009 0.099 0.019 0.010 0.099 0.019 0.010
0.056 0.033 0.004 0.059 0.026 0.004 0.068 0.026 0.005 0.068 0.025 0.005

PLSMDT25
0.064 0.036 0.005 0.074 0.022 0.006 0.081 0.022 0.007 0.081 0.021 0.007
0.069 0.037 0.006 0.084 0.023 0.008 0.089 0.022 0.008 0.089 0.022 0.008
0.063 0.030 0.005 0.072 0.021 0.006 0.083 0.020 0.007 0.084 0.019 0.007

PLSMDT50
0.072 0.031 0.006 0.089 0.019 0.008 0.096 0.019 0.010 0.096 0.019 0.010
0.076 0.029 0.007 0.095 0.019 0.009 0.099 0.019 0.010 0.099 0.019 0.010

Simu. 08
− 0.007 0.031 0.001 0.019 0.016 0.001 0.032 0.015 0.001 0.033 0.016 0.001

RIMD 0.052 0.024 0.003 0.084 0.010 0.007 0.089 0.009 0.008 0.089 0.010 0.008
0.099 0.021 0.010 0.128 0.008 0.016 0.129 0.008 0.017 0.129 0.008 0.017
0.042 0.022 0.002 0.067 0.012 0.005 0.079 0.011 0.006 0.079 0.012 0.006

TSMD 0.053 0.020 0.003 0.085 0.009 0.007 0.092 0.009 0.008 0.092 0.009 0.008
0.058 0.021 0.004 0.088 0.010 0.008 0.094 0.010 0.009 0.094 0.010 0.009

− 0.167 0.045 0.030 − 0.122 0.023 0.016 − 0.093 0.024 0.009 − 0.093 0.024 0.009
HMD − 0.102 0.042 0.012 − 0.047 0.020 0.003 − 0.031 0.020 0.001 − 0.031 0.020 0.001

− 0.048 0.036 0.004 0.000 0.017 0.000 0.010 0.017 0.000 0.010 0.017 0.000
0.028 0.046 0.003 0.032 0.026 0.002 0.048 0.026 0.003 0.051 0.025 0.003

PLSMDO25
0.038 0.044 0.003 0.062 0.027 0.005 0.073 0.025 0.006 0.072 0.024 0.006
0.047 0.048 0.004 0.072 0.024 0.006 0.081 0.025 0.007 0.080 0.025 0.007
0.041 0.040 0.003 0.059 0.022 0.004 0.074 0.020 0.006 0.075 0.020 0.006

PLSMDO50
0.057 0.039 0.005 0.090 0.019 0.008 0.097 0.017 0.010 0.097 0.019 0.010
0.061 0.039 0.005 0.092 0.018 0.009 0.097 0.018 0.010 0.098 0.018 0.010
0.030 0.046 0.003 0.033 0.026 0.002 0.048 0.025 0.003 0.048 0.025 0.003

PLSMDT25
0.039 0.044 0.003 0.062 0.026 0.004 0.071 0.024 0.006 0.070 0.024 0.006
0.044 0.047 0.004 0.072 0.024 0.006 0.078 0.023 0.007 0.078 0.024 0.007
0.044 0.039 0.004 0.061 0.022 0.004 0.074 0.020 0.006 0.075 0.020 0.006

PLSMDT50
0.058 0.037 0.005 0.089 0.020 0.008 0.096 0.018 0.010 0.096 0.019 0.010
0.062 0.037 0.005 0.092 0.018 0.009 0.097 0.018 0.010 0.098 0.018 0.010

CC, complete case analysis; HMD hybrid algorithm with missing data handling methods; KN, weighted k-nearest neighbors imputation method;

KNM, k-nearest neighbors imputation method based on median value; MEAN, mean imputation method; PLSMDO25
and PLSMDO50

, one-stage PLS

algorithm with missing data handling methods at quantile levels 0.25 and 0.50; PLSMDT25
and PLSMDT50

, two-stage PLS algorithm with missing data

handling methods at quantile levels 0.25 and 0.50; RIMD, repeated indicators algorithm with missing data handling methods; TSMD, two-step

algorithm with missing data handling methods.
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PLSMDT are slightly smaller than other PLSMD

algorithms. With the NMV and MR increasing, the

mean biases of HMD with CC and MEAN get

worse, but in the same simulation the mean biases

of HMD are improved with KN and KNM when

compared with CC and MEAN.

3. Unbalanced models under Simu:05� 08.

According to Tables 4 and 5, the biases of the esti-

mated path coefficients using RIMD and HMD vary

a lot from one to another. For example, the mean

biases of RIMD in Table 5 with CC are 0.018,

0.069, and 0.112. The mean biases of HMD in

Table 5 with CC are 20.123, 20.063, and 0.014.

The values of 0.112 and the absolute value of

20.123 are much larger than 0.018 and 0.014, and

also larger than the other PLSMD algorithms. In

addition, the biases of HMD get improved with KN

and KNM when compared with CC and MEAN.

Based on the previous conclusions, the performances of

TSMD, PLSMDO, and PLSMDT in unbiasedness are com-

parable in all simulations. PLSMDO and PLSMDT not only

capture the overview of structural relationships between

variables, but also have relatively smaller biases at quantile

level 0.25. The performance of RIMD and TSMD in effi-

ciency are relatively better. The performance of CC in

unbiasedness seems better than that of other missing data

handling methods, while its performance in efficiency is

worse. HMD is more sensitive to the differences in model

type (balanced or unbalanced), the NMV, MR, and missing

data handling methods. RIMD performs badly in unba-

lanced models.

3.3.2 Comparisons of latent variables’ prediction
accuracy. Table 6 displays the average correlation coeffi-

cients between the predicted scores of second-order latent

variables and the defined true scores from 200 Monte

Carlo replicates with sample size 500. This table consists

of four parts. The upper left corner B1 presents the aver-

age correlation coefficients under balanced (5, 5, 5) with

one missing manifest variable for each first-order latent

variable. The lower left corner B2 presents the average

correlation coefficients under balanced (5, 5, 5) with two

missing manifest variables for each first-order latent vari-

able. The upper right corner U1 presents the average cor-

relation coefficients under unbalanced (4, 6, 8), with one

Table 6. Average correlation coefficients between the predicted latent variable scores and the defined true scores from 200 Monte
Carlo replicates with sample size 500.

B1 U1

B1 0.1 0.2 0.1 0.2

CC, MEAN, KN, KNM CC, MEAN, KN, KNM CC, MEAN, KN, KNM CC, MEAN, KN, KNM

RIMD 0.917, 0.928, 0.929, 0.929 0.905, 0.926, 0.927, 0.927 0.921, 0.931, 0.932, 0.932 0.909, 0.930, 0.930, 0.930
TSMD 0.917, 0.927, 0.929, 0.929 0.905, 0.925, 0.927, 0.927 0.921, 0.931, 0.932, 0.932 0.910, 0.929, 0.931, 0.931
HMD 0.871, 0.880, 0.886, 0.886 0.851, 0.874, 0.881, 0.881 0.866, 0.882, 0.885, 0.885 0.848, 0.881, 0.883, 0.883
PLSMDO25

0.917, 0.927, 0.929, 0.929 0.904, 0.925, 0.927, 0.927 0.921, 0.931, 0.932, 0.932 0.910, 0.929, 0.931, 0.931
PLSMDO50

0.917, 0.927, 0.929, 0.929 0.905, 0.925, 0.927, 0.927 0.921, 0.931, 0.932, 0.932 0.909, 0.929, 0.931, 0.931
PLSMDT25

0.917, 0.927, 0.929, 0.929 0.905, 0.925, 0.927, 0.927 0.921, 0.931, 0.932, 0.932 0.910, 0.929, 0.931, 0.931
PLSMDT50

0.917, 0.927, 0.929, 0.929 0.905, 0.925, 0.927, 0.927 0.921, 0.931, 0.932, 0.932 0.910, 0.929, 0.931, 0.931

B2 U2

B2 0.1 0.2 0.1 0.2

CC, MEAN, KN, KNM CC, MEAN, KN, KNM CC, MEAN, KN, KNM CC, MEAN, KN, KNM

RIMD 0.911, 0.923, 0.926, 0.926 0.891, 0.919, 0.922, 0.922 0.915, 0.927, 0.929, 0.929 0.897, 0.924, 0.926, 0.926
TSMD 0.911, 0.921, 0.925, 0.925 0.891, 0.914, 0.919, 0.919 0.915, 0.926, 0.930, 0.929 0.897, 0.920, 0.925, 0.925
HMD 0.861, 0.862, 0.878, 0.878 0.831, 0.842, 0.862, 0.862 0.858, 0.882, 0.885, 0.885 0.831, 0.880, 0.882, 0.882
PLSMDO25

0.911, 0.921, 0.925, 0.925 0.891, 0.914, 0.920, 0.920 0.915, 0.926, 0.930, 0.929 0.897, 0.920, 0.925, 0.925
PLSMDO50

0.911, 0.921, 0.925, 0.925 0.891, 0.915, 0.920, 0.920 0.915, 0.926, 0.930, 0.929 0.897, 0.921, 0.925, 0.925
PLSMDT25

0.911, 0.921, 0.925, 0.925 0.891, 0.914, 0.919, 0.919 0.915, 0.926, 0.930, 0.929 0.897, 0.920, 0.925, 0.925
PLSMDT50

0.911, 0.921, 0.925, 0.925 0.891, 0.914, 0.919, 0.919 0.915, 0.926, 0.930, 0.929 0.897, 0.920, 0.925, 0.925

0.1 and 0.2, the missing rates. B1, balanced (5, 5, 5) with one missing manifest variable for each first-order latent variable. B2, balanced (5, 5, 5) with

two missing manifest variables for each first-order latent variable. U1, unbalanced (4, 6, 8) with one missing manifest variable for each first-order latent

variable. U2, unbalanced (4, 6, 8) with two missing manifest variables for each first-order latent variable. CC, complete case analysis. MEAN, mean

imputation method. KN, weighted k-nearest neighbors imputation method. KNM, k-nearest neighbors imputation method based on median value.

HMD, hybrid algorithm with missing data handling methods; PLSMDO25
and PLSMDO50

, one-stage PLS algorithm with missing data handling methods at

quantile levels 0.25 and 0.50; PLSMDT25
and PLSMDT50

, two-stage PLS algorithm with missing data handling methods at quantile levels 0.25 and 0.50;

RIMD, repeated indicators algorithm with missing data handling methods; TSMD, two-step algorithm with missing data handling methods.
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missing manifest variable for each first-order latent vari-

able, and the lower right corner U2 presents the average

correlation coefficients under unbalanced (4, 6, 8) with

two missing manifest variables for each first-order latent

variable.

Table 6 shows that, except HMD, the average correla-

tion coefficients of all the other PLS algorithms are com-

parable in all models and settings. This finding indicates

that RIMD, TSMD, HMD, PLSMDT, and PLSMDO have

similar prediction accuracy with different missing data

handling methods. HMD has relatively obvious smaller

average correlation coefficients when compared with other

PLS algorithms, which displays a relatively poor predic-

tion ability when compared with other PLSMD algorithms.

From CC to MEAN to KN to KNM, the average correla-

tion coefficients become larger in all models and settings.

And there is very little difference between KN and KNM.

Therefore, in our simulations, both KN and KNM have a

relatively better property of predicting latent variables’

scores for different PLSMD algorithms when compared to

CC and MEAN.

4 Application to real data study

In this section we illustrate the performance of all the

PLSMD algorithms using business sophistication data

from the Global Innovation Index 2018 (GII 2018). GII

2018 provides detailed metrics about the innovation per-

formance of 126 countries and economies around the

world. Its 80 indicators explore a broad vision of innova-

tion, including political environment, education, infra-

structure, and business sophistication. Here, we use the

data of business sophistication to investigate the perfor-

mance of our algorithms.

As one of five enabling pillars of the Innovation Input

Sub-Index, business sophistication (BS) tries to capture the

level of business sophistication to assess how conducive

firms are to innovation activity from three dimensions:

knowledge workers (KW), innovation linkages (IL), and

knowledge absorption (KA). Both BS and its three dimen-

sions cannot be observed directly and belong to latent vari-

ables. However, all three dimensions have their manifest

indicators or variables. We calculate the MR (%) of all the

manifest variables. The first dimension, KW, has five indi-

cators in total. They are employment in knowledge-

intensive services (EI, 10.32%), firms offering formal

training (FO, 28.57%), gross expenditure on R&D

(GERD) performed by business enterprise (GP, 28.57%),

GERD financed by business enterprise (GF, 24.60%), and

females employed with advanced degrees (FE, 15.87%).

The second dimension, IL, also has five indicators. They

are university–industry research collaboration (UR,

5.56%), state of cluster development (SO, 5.56%), GERD

financed by abroad (GB, 21.43%), joint venture/strategic

alliance deals (JV, 11.11%), and patent families filed in

two offices (PF, 9.52%). The indicators of the third dimen-

sion, KA, are intellectual property payments (IP, 9.52%),

high-tech imports (HI, 2.38%), ICT services imports (IS,

1.59%), foreign direct investment net inflows (FD,

0.79%), and research talent in business enterprise (RT,

34.13%). Finally, we get the BS model with three dimen-

sions and 15 manifest indicators. (More information about

indicators can be seen in the 2018 Global Innovation

Index.)

Figure 2 shows the BS hierarchical latent variable

model.

For 8t 2 (0, 1), the BS hierarchical latent variable

model in Figure 2 can be written as

Q(EI ,FO,GP,GF,FE)T (t)= (l11, l12, l13, l14, l15)
T � KW ð14Þ

Q(UR, SO,GB, JV ,PE)T (t)= (l21, l22, l23, l24, l25)
T � IL ð15Þ

Q(IP,HI , IS,FD,RT )T (t)= (l31, l32, l33, l34, l35)
T � KA ð16Þ

Q(KW , IL,KA)T (t)= (p1, p2, p3)
T � BS ð17Þ

Models (14)–(16) are the measurement models and

model (17) is the structural model for the BS hierarchical

latent variable model in Figure 2. Here, we run 200 boot-

straps. Considering all 126 countries are developed to dif-

ferent levels, we want to investigate the overall view of

relationship and apply RIMD, TSMD, HMD, PLSMDT,

and PLSMDO to obtain the estimated path coefficients,

loading coefficients and the scores of first-order latent

variables and second-order latent variables. Raw estima-

tion (RE), mean biases (MB), standard errors (SE), and

mean squared errors (MSE) of the estimated path coeffi-

cients using different PLS algorithms from 200 Monte

Carlo replicates are listed in Table 7 (here, the related

results of PLSMDT and PLSMDO are at quantile levels

0.25, 0.50, and 0.75).

This table consists of nine layers. The first layer is the

RIMD estimator with missing data handling methods CC,

MEAN, KN, and KNM. The latter layers present the same

information from the other estimators. Based on Table 7,

we find that both RIMD and TSMD have relatively smaller

estimated SE than other PLSMD methods with all missing

data handling methods except CC. For all the PLSMD

algorithms, the estimated SE of CC are obviously larger

than MEAN, KN, and KNM. These conclusions indicate

that the performance of CC in efficiency is much worse

than other missing data handling methods, no matter which

PLSMD algorithm we choose.

According to the RE, we can find the most important

factor (first-order latent variable) for BS. The most impor-

tant factor with CC is very different from other missing data

handling methods for each PLSMD algorithm. The most

important factor with KN and KNM are the same for each

PLSMD algorithm. The most important factor with MEAN

Cheng 835



is different from KN and KNM using PLSMDO and

PLSMDT at quantile levels 0.50 and 0.75. The most impor-

tant factor is the second first-order latent variable IL using

RIMD, TSMD, HMD, and PLSMDT25
with the missing

data handling methods MEAN, KN, and KNM. The most

important factor using PLSMDO at quantile level 0.25 is

KW with MEAN, KN, and KNM. By PLSMDO50
, IL

(0.935), KW (0.930), and KW (0.935) are the most impor-

tant factors for MEAN, KN and KNM, respectively. By

PLSMDO50
and PLSMDT50

, IL (0.935 and 0.935), KW

(0.930 and 0.976), and KW (0.935 and 0.975) are the most

important factors for MEAN, KN, and KNM, respectively.

By PLSMDO75
and PLSMDT75

, KW (0.936 and 0.950),

KA (1.057 and 0.974), and KA (0.998 and 1.002) are the

most important factors for MEAN, KN, and KNM respec-

tively. According to all linear regression type PLSMD algo-

rithms and missing data handling methods, all the countries

should pay more attention to IL. If we want to investigate

the most important factors for BS at different levels, both

PLSMDO and PLSMDT will give us the overview of the

structural relationship between variables. Therefore, differ-

ent countries can focus on different important factors

according to the RE in Table 7. For brevity, the estimated

loading coefficients and predicted latent variable scores are

omitted here, but available upon request from the author.

5 Discussion

In this paper, we investigate two kinds of missing data

problems in hierarchical latent variable models: latent

variables and missing manifest variables. We compare five

PLSMD algorithms with consideration of four missing

manifest variable handling methods through simulation

studies. For missing manifest variables, complete case

analysis (CC), mean value replacement (MEAN), weighted

k-nearest neighbors imputation method (KN), and k-near-

est neighbors imputation method based on median value

(KNM) are very popular missing data handling methods.

For latent variables without any direct observations, the

three well-known PLSMD algorithms (RIMD, TSMD,

HMD), which are based on a linear regression type model,

cannot be used to investigate the overall view of the struc-

tural relationship between variables at different levels.

Hence, we modify the PLS procedure by quantile regres-

sion and investigate two PLSMD algorithms (PLSMDO

and PLSMDT) based on a hierarchical latent variable

model through simulations.

According to the simulation investigation, we find the

following conclusions. (1) In all settings, the performance

of TSMD, PLSMDO, and PLSMDT in unbiasedness are

comparable. But PLSMDO and PLSMDT have relatively

smaller biases at quantile level 0.25. (2) In all eight simula-

tions, RIMD and TSMD perform relatively better than

other PLSMD algorithms in SE with different missing data

handling methods. (3) RIMD performs badly in unba-

lanced models. (4) HMD is more sensitive to the difference

in model type (balanced or unbalanced), the NMV, MR,

and missing data handling methods. (5) The performance

of CC in unbiasedness seems better than other missing data

handling methods, while its performance in efficiency is

worse. (6) HMD has relatively poor prediction ability

Figure 2. BS hierarchical latent variable model.
BS, business sophistication; KW, knowledge workers; IL, innovation linkages; KA, knowledge absorption; EI, employment in knowledge-intensive

services; FO, firms offering formal training; GP, gross expenditure on R&D (GERD) performed by business enterprise; GF, GERD financed by business

enterprise; FE, females employed with advanced degrees; UR, university–industry research collaboration; SO, state of cluster development; GB,

GERD financed by abroad; JV, joint venture/strategic alliance deals; PF, patent families filed in two offices; IP, intellectual property payments; HI, high-

tech imports; IS, ICT services imports; FD, foreign direct investment net inflows; RT, research talent in business enterprise.
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when compared with other PLSMD algorithms. However,

RIMD, TSMD, HMD, PLSMDO, and PLSMDT are compa-

rable in latent variable score prediction accuracy with dif-

ferent missing data handling methods.

In our research, the type of manifest variables we focus

on are continuous variables for hierarchical latent variable

models. In the future, we will make more efforts with other

types of manifest variables, such as categorical data or

other kinds of discrete data, and consider more complex

data problems.34 We will apply our methods to more real

data problems.35240 Another future work is about investi-

gating how different PLSMD algorithms can be used in

longitudinal data analysis or dynamic structural equation

models. Last, but not least, all the PLSMD algorithms

should be expanded to large-scale data.41
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sions. In: Jöreskog KG and Wold H (eds) Systems under indi-

rect observations: part II. Amsterdam: North-Holland, 1982,

pp.1–54

18. Ciavolino E and Al-Nasser AD. Comparing generalized

maximum entropy and partial least squares methods for

structural equation models. J Nonparametr Stat 2009; 21(8):

1017–1036.

19. Claes C, Peter H and Anders HW. Robustness of partial least

squares method for estimating latent variable quality struc-

tures. J Appl Stat 1999; 26(4): 435–446.

20. Esposito VV, Chin WW, Henseler J, et al.. Handbook of par-

tial least squares. concepts, methods and applications. New

York: Springer, 2010.

21. Fornell C and Bookstein FL. Two structural equation mod-

els: LISREL and PLS applied to consumer exit-voice theory.

J Market Res 1982; 19(4): 440–452.

22. Guinot C, Latreille J and Tenenhaus M. PLS path modeling

and multiple table analysis: application to the cosmetic habits

of women in Ile-de-France. Chemom Intell Lab Syst 2001;

58(2): 247–259.

23. Henseler J, Ringle CM and Sinkovics RR. The use of partial

least squares path modeling in international marketing. In:

Sinkovics RR and Ghauri PN (eds) Advances in International

Marketing Bingley: Emerald Publishing, 2009, pp.277–320.

24. Henseler J, Ringle CM and Sarstedt M. Using partial least

squares path modeling in international advertising research:

basic concepts and recent issues. In: Okazaki S (ed)

Handbook of research in international advertising.

Cheltenham: Edward Elgar Publishing, 2012, pp.252–276.

25. Sanchez G. PLS path modeling with R. Berkeley, CA:

Trowchez Editions, 2013.

26. Ciavolino E and Nitti M. Simulation study for PLS path

modeling with high-order construct: a job satisfaction model

evidence. In: Advanced dynamic modeling of economic and

social systems. Berlin: Springer, 2013, pp.185–207.

27. Tenenhaus M. l’approche PLS. Revue de Statistique

Applique 1999; 47(2): 5–40.

28. Tenenhaus M, Esposito Vinzi V, Chatelin YM, et al. PLS

path modeling. Comput Stat Data Anal 2005; 48: 159–205.

838 Simulation: Transactions of the Society for Modeling and Simulation International 96(10)



29. Chatelin YM, Vinzi Esposito V and Tenenhaus M. State-of-

art on PLS path modeling through the available software,

www.hec.fr/Recherche/Cahiers-de-recherche/State-of-arton-

PLS-Path-Modeling-through-the-available-software (2002).

30. Ringle CM, Wende S and Becker JM. SmartPLS

3.Boenningstedt: SmartPLS GmbH, 2015.

31. Ciavolino E and Nitti M. Using the hybrid two-step estima-

tion approach for the identification of second-order latent

variable models. J Appl Stat 2013; 40(3): 508–526.

32. Koenker R and Bassett GJ. Regression quantiles.

Econometrica 1978; 46: 33–50.

33. Koenker R. Quantile regression. Cambridge: Cambridge

University Press, 2005.

34. Cui R, Bucur IG, Groot P, et al. A novel Bayesian approach

for latent variable modeling from mixed data with missing

values. Stat Comput 2019; 29(5): 977–993.

35. Hu J, Zhang WQ, Xing F, et al. Research on the measure-

ment and evaluation of national economic and social devel-

opment from the perspective of the Belt and Road Initiative.

Statistics and Information Forum 2018; 6: 43–53.

36. Xia WL and Ding PQ. Establishment of provincial innova-

tion and entrepreneurship environment evaluation indicators

system: evaluate the 31 provinces of China. Statistics and

Information Forum 2017; 4: 63–72.

37. Zhou YD, Meng XC and Yu ZQ. Evaluation index system

of the five-pronged approach ‘‘Five in One’’ for the regional

comprehensive development. Statistics and Information

Forum 2018; 5: 19–25.

38. Sun XD and Ni RX. Onboard attributes/criteria of cruise

ships and cruisers satisfaction evaluation. Statistics and

Information Forum 2017; 10: 116–122.

39. Liu M and Chen Z. Research on indicator system for measur-

ing E-commerce. Statistics and Information Forum 2008; 7:

20–28.

40. Yuan XL, Jing XJ, Zhao ZH, et al. The construction of eva-

luation system of regional economic growth quality: empiri-

cal analysis based on Shaanxi province data. Statistics and

Information Forum 2017; 6: 42–47.

41. Kang Q. Financial risk assessment model based on big data.

International Journal of Modeling, Simulation, and Scientific

Computing 2019; 10(4): 106–113.

Author biography

Hao Cheng is an assistant research fellow at the

National Academy of Innovation Strategy, China

Association for Science and Technology. He obtained his

PhD from Renmin University of China and has visited

Columbia University, Needham Research Institute of

Cambridge University, the London School of Economics

and Political Science, and ISCTE-IUL as a visiting

scholar.

Cheng 839




