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Summary

By employing all the observed information and the optimal augmentation

term, we propose an augmented inverse probability weighted fractional impu-

tation method (AFI) to handle covariates missing at random in quantile regres-

sion. Compared with the existing completely case analysis, inverse probability

weighting, multiple imputation and fractional imputation based on quantile

regression model with missing covarites, we carry out simulation study to

investigate its performance in estimation accuracy and efficiency, computa-

tional efficiency and estimation robustness. We also talk about the influence of

imputation replicates in our AFI. Finally, we apply our methodology to part of

the National Health and Nutrition Examination Survey data.
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1 | INTRODUCTION

As a promising and flexible modeling tool, quantile regression (Koenker and Bassett 1978; Koenker 2005) has the ability
to capture the complex associations between a response variable and its covariates at different quantiles.1,2 Because of
this most attractive feature, quantile regression estimates are more robust to outliers than traditional least-squares
regression. In this paper, we consider the following linear quantile regression model,

QY τð Þ= xTβ1,τ + zTβ2,τ,8τ� 0,1ð Þ ð1Þ

where QY(τ) stands for the τth quantile of a response variable Y, and (x, z) are both covariate vectors. We assume
that the conditional quantile function of Y given (x, z) is a linear function of (x, z) with quantile specific coefficients
(β1, τ, β2, τ), z contains the constant 1 and hence the intercept term is not written out separately.

Quantile regression has gained so much attention in both theoretical investigations and applications especially
when the distribution of the response is heavily tailed. One of the common challenges in quantile regression is the pres-
ence of missing data. That's mainly because there is no likelihood function for quantile regression and hence most exis-
ting likelihood-based methods cannot be applied directly. In this article, we investigate missing covariates problems in
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quantile regression and assume that the data are missing at random (MAR; Little and Rubin 2002).3 That is, we assume
that the covariate x may be missing at random, but z is always observed in model (1).

Existing imputation methods or algorithms dealing with missing covarites in quantile regression can be roughly
classified into the following categories:

1. Complete-data-based procedures, including weighting adjustments. The popularity of complete case (CC) analysis is
due to its simplicity to discard incompletely observed samples and analysis the complete samples only. It may be sat-
isfactory with small amounts of missing data. However, it can lead to biased and inefficient estimators especially
when drawing inferences for subpopulations (Little and Rubin 2002) and the rate of missingness is high (Han et al
2019).4 Another popular and simple method is inverse probability weighting (IPW) (Horvitz and Thompson 1952).5

Lipsitz et al (1997) reweighted the estimating equations by IPW on quantile longitudinal studies with attrition and
independently identically distributed (i.i.d.) error terms, which extends the well-known conditional mean modeling
to quantile modeling.6 Sherwood et al (2013) considered an IPW quantile regression approach when the covariates
are missing at random.7 Sun et al (2012) considered quantile regression for competing risk data when the failure
type was missing.8 Chen et al (2015) proposed a kind of nonparametric IPW approach based on Wang et al (1997),
which developed originally for conditional mean modeling.9,10 Compared with IPW, augmented inverse probability
weighting (AIPW) has the ability to get more efficient and doubly robust estimators such as Chen et al (2015)'s non-
parametric AIPW method.

2. Imputation-based and Model-based procedures. These procedures create a predictive distribution for the imputation
based on the observed data or define a model for the observed data and base inferences on distribution under that
model with estimated parameters. Mean imputations and regression imputations are very popular. However, mean
imputations do not add extra observed information. Yoon (2010) imputed the missing values from the conditional
quantile function, but the method is valid only under i.i.d. errors.11 Wei et al (2012) developed a multiple imputation
(MI) procedure for missing covariates based on a linear quantile regression model that brings relatively expensive
computational burden.12 Cheng et al (2018) proposed a new fast imputation (FI) algorithm in quantile regression
and its corresponding IPW-modified algorithm to deal with two kinds of missing covariates problems (the mis-
singness is related with the response or not).13 However, its performance in robustness need to be discussed further
when the regression function is misspecified. Wei et al (2014) proposed an iterative EM-type algorithm to solve their
unbiased estimating equations that simultaneously hold at all the quantile levels.14 But it is computationally unde-
sirable. Chen et al (2015)'s nonparametric estimating equations projection method was developed by Zhou et al
(2008) under the conventional setup of conditional mean modeling with i.i.d. errors. This method was motivated by
the fact that direct replacements of the unobserved data by their imputed values generally yield estimating equations
that are biased.9,15

In this paper, we consider missing covariates problems in quantile regression and propose a new parametric aug-
mented inverse probability weighted fractional imputation method (AFI). This method is based on parametric modeling
of the propensity score and conditional expectation of the estimating functions. The rest of the paper is organized as fol-
lows. We described our imputation methods in Section 2, and conducted a simulation study in Section 3. Finally, we
applied the proposed methods to part of the National Health and Nutrition Examination Survey study in Section 4.
Some final discussions are placed in Section 5.

2 | ESTIMATION WITH AFI IMPUTATION

2.1 | Notation

Suppose (xi, zi, yi), i = 1, …, n is an i.i.d. random sample following the linear quantile model (1). The sample size
equals n. We denote δi as the binary indicator for the existence of xi. That is, xi is observed when δi = 1 for i = 1, …,
n1 and is missing when δi = 0 for i = n1 + 1, …, n. Let n0 = n − n1 be the number of incomplete cases, we further
assume that 0 < limn ! ∞(n0/n1) = λ < ∞, so that the proportion of the missing observations are non-negligible
and non-dominating. Thus, the missing mechanism in our paper can be represented as P(δi = 1| yi, xi, zi) = P
(δi = 1| zi).
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2.2 | Method

Robins et al (1994) defined a class of AIPW estimators by solving the following augmented estimating equation.16

S�n βð Þ=
Xn
i=1

δi
pi
φ yi−xTi β1−zTi β2
� �

+
Xn
i=1

1−
δi
pi

� �
Ex φτ yi−xTi β1−zTi β2

� �
yi,zij� � ð2Þ

We can easily get that the expectation of S�n βð Þ approximates zero when β = βtrue and Q(y j x, z) = (x, z)Tβtrue.
In fact, S�n βð Þ can be written as A1 +A2 +A3, where we denote A1 as

Pn1
i=1

1
pi
φτ yi−xTi β1−zTi β2
� �

, A2 asPn
i= n1 + 1Ex φτ yi−xTi β1 −zTi β2

� �jyi,zi� �
and A3 as

Pn1
i=1 1− 1

pi

� 	
Ex φτ yi−xTi β1−zTi β2

� �jyi,zi� �
.

A1 is just the same as inverse probability weighting method (IPW). That is, IPW weights each completely
observed data by 1/prob(δi = 1| yi, zi).

17,18 We use monte-carlo integrations to approximate the conditional expec-
tation Exfφτðyi−xTi β1−zTi β2Þ j yi,zig in A2. Based on the bayesian theory, f(x j z, y) can be written as f yijxi,zið Þf xijzið ÞÐ

x
f yijxi,zið Þf xijzið Þdx .

Consequently, one can rewrite the conditional expectation Exfφτðyi−xTi β1−zTi β2Þ j yi,zig in A2 byÐ
x
φτ yi−xTi β1−zTi β2ð Þf yijxi,zið Þf xijzið ÞdxÐ

x
f yijxi,zið Þf xijzið Þdx . Both of the numerator and denominator can be approximated by Monte-carlo

integrations,13,19

ð
x
φτ yi−xTi β1−zTi β2
� �

f yijxi,zið Þf xijzið Þdx≈ 1
M

XM
k=1

φτ yi−~x�Ti,k β1−zTi β2
� �

f yi j ~x�i,k,zi
� �

and

ð
x
f yijxi,zið Þf xijzið Þdx≈ 1

M

XM
k=1

f yi j ~x�Ti,k ,zi
� �

where ~x�Ti,k is randomly drawn from f(xi| zi). Therefore,

A2 =
Xn

i=n1 + 1

Exfφτðyi−xTi β1−zTi β2Þ j yi,zig

=
Xn

i=n1 + 1

Ð
xφτ yi−xTi β1−zTi β2

� �
f yijxi,zið Þf xijzið ÞdxÐ

xf yijxi,zið Þf xijzið Þdx

=
Xn

i=n1 + 1

1
M1

XM1

k=1

φτ yi−~x�Ti,k β1−zTi β2
� �

f yi j ~x�i,k,zi
� �

1
M1

XM1

k=1

f yi j ~x�Ti,k ,zi
� �

=
Xn

i=n1 + 1

XM1

k=1

f yi j ~x�i,k,zi
� �

PM1

k=1
f yi j ~x�i,k,zi
� �φτ yi−~x�Ti,k β1−zTi β2

� �

ð3Þ

where ~xi,k is randomly drawn from f(xi| zi). More specifically, we first run a linear regression (x as the response and z as
the covariate) only using completely observed data. Then we use the estimated coefficients as mean μ̂ and calculate the
variance of residual errors as variance η̂. Finally we get the values of missing ~xi,k from normal distribution N μ̂, η̂ð Þ. Thus,
A2 equals

Pn
i=n1 + 1

PM1
k=1wi,kφτ yi−~x�Ti,k β1−zTi β2

� �
, where wi,k =

f yij~x�i,k ,zið ÞPM1

k=1
f yij~x�i,k ,zið Þ.
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A3 is different from A2 in two points. Firstly, there exists an negative weight 1− 1
pi
rather than one. Secondly, the

covariates x here is observed. To calculate the conditional expectation Exfφτðyi−xTi β1−zTi β2Þ j yi,zig in A3, we also use
monte-carlo integrations.

Exfφτðyi−xTi β1−zTi β2Þ j yi,zig=
ð
x
φτ yi−xTi β1−zTi β2
� �

f xijyi,zið Þdx

=
ð
x
φτ yi−xTi β1−zTi β2
� �

f xijyi,zið Þdx

=

1
M2

XM2

l=1

φτ yi−~x�Ti,l β1−zTi β2
� �

f yi j ~x�i,l,zi
� �

1
M2

XM2

l=1

f yi j ~x�Ti,l ,zi
� �

=
XM2

l=1

f yi j ~x�i,l,zi
� �

PM2

l=1
f yi j ~x�i,l,zi
� �φτ yi−~x�Ti,l β1−zTi β2

� �

ð4Þ

Where ~x�Ti,l is randomly drawn from f(xi| yi, zi). Because all the x, y and z in A3 are completely observed, the density f
(xi| yi, zi) can be easily estimated by maximizing a parametric likelihood over the observed (x, y, z) under the conditional
independence assumption. We model x given y and z parametrically as f(x|y, z, η2). The missing-at-random assumption
facilitates the estimation of η2 based on the complete data. We write the estimate as η̂2 , and the estimated conditional
density of x given y and z as f xjy,z, η̂2ð Þ. Thus, we can get A3.

A3 =
Xn1
i=1

1−
1
pi

� �
1
M2

XM2

l=1

f yi j ~x�i,l,zi
� �

PM2

l=1
f yi j ~x�i,l,zi
� �φτ yi−~x�Ti,l β1−zTi β2

� �

=
Xn1
i=1

XM2

l=1

1−
1
pi

� �
1
M2

f yi j ~x�i,l,zi
� �

PM2

l=1
f yi j ~x�i,l,zi
� �φτ yi−~x�Ti,l β1−zTi β2

� �

=
Xn1
i=1

XM2

l=1

wi,lφτ yi−~x�Ti,l β1−zTi β2
� �

ð5Þ

where wi,l = 1− 1
pi

� 	
1
M2

f yij~x�i,l,zið ÞPM2

l=1
f yij~x�i,l,zið Þ.

In both wi,k and wi,l, we need to estimate the density function f(y j x, z) by using the first derivative
of the conditional quantile function Qy(τ j x, z) at τy, where τy is the quantile level of y, that is, pr(Y ≤ y j x, z) = τy (Wei
et al, 2012). Following this direction, we model the entire conditional quantile process Qy(τ j x, z) = (xT, zT) β(τ) on a
fine grid of 0< τ1 < � � �< τk < � � �< τKn <1 and approximate the density f(y j x, z) by

f̂ y j x,z, β̂n1 τð Þ
n o

=
XKn

k=1

ðτk+1−τkÞI xT,zTð Þβ̂n1,τk ≤ y< xT,zTð Þβ̂n1,τk+1

n o
xT,zTð Þβ̂n1,τk+1

− xT,zTð Þβ̂n1,τk
: ð6Þ

In addition, there exist M1 and M2 in A2 and A3 respectively. The selection of (M1, M2) may effect the properties of
estimator and computing time. Therefore, we carry out a set of simulations to investigate (M1, M2) selection. Algorithm
1 shows the procedure of AFI algorithm.
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3 | SIMULATION STUDY

3.1 | Models and settings

We use Monte-Carlo simulations to investigate the performance of our estimators. We consider the following location-
scale model to complete the sampling process,

yi = β0 + β1xi + β2zi + ξ1xi + ξ2zið Þei ð7Þ

where the coefficients (β0, β1, β2) = (1,1,1) and the covariates (xi, zi) are jointly normal with mean vector (4, 4)T, vari-
ances (1, 1)T and correlation 0.5. We consider Case 1 (ξ1 = ξ2 = 1/(xi + zi)) and Case 2 (ξ1 = ξ2 = 0.5). In Case 1, model
(7) can be written as yi = β0 + β1xi + β2zi + ei and the error is homoscedastic. In this case, the true intercept equals 1
+ Qτ(ei) at quantile level τ, but the two slope coefficients equal 1 at every quantile level. In Case 2, model (7) can be
written as yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei and the error is heteroscedastic. In this case, the true intercept equals
1 at every quantile level, but the two slope coefficients equal to 1 + 0.5Qτ(ei) at quantile level τ. Furthermore, we con-
sider two distributions for the random errors ei, either standard normal N(0, 1) or chi-square χ2(1). We define the miss-
ing mechanism as p(δi| zi) = max[0, {(zi − 3)/10}1/20], such that approximately 25% observations miss xi's, and the
missingness is independent with Y. In what follow, we denote Setting S1-1 as Case 1 with normal ei, and Setting S1-2
is that with chi-square ei. Likewise, we denote Setting S2-1 and Setting S2-2 as the Case 2 with normal and chi-square
random errors.

To investigate the potential bias that could be induced from misspecified f(x| z) (Setting S3) or propensity score
functions (Setting S4), we also examine the following settings based on model (7) with heteroscedastic errors (Case 2).
In S3, we simulate covariates (xi, zi) from xi = (0.18 * ui, 1 + 0.68 * ui, 2) + 3.14, and zi = (0.68 * ui, 1 + 0.18 * ui, 2)
+ 3.14, where both ui, 1 and ui, 2 are independent χ

2(1) random variables (Wei et al, 2012). The constants (0.18, 0.68 and
3.14) make sure that (xi, zi) has the same mean, variance and correlation as the assumptions in model (7). Once simulat-
ing the non-normal covariates, we generate the responses from model (7) in Case 2 when ξ1 = ξ2 = 0.5. For each gener-
ated sample, we allow xi to be missing completely at random with probability 0.25. We apply the same missing
mechanism and estimation procedures as above, pretending that (xi, zi) is jointly normal. In S4, we consider one kind
of misspecified propensity score function based on model (7) in Case 2 when ξ1 = ξ2 = 0.5: p(δi| zi) = exp(2.5 * z2)/(1
+ exp(2.5 * z2)) for all (z, y). Based on the simulation data under the four settings with sample size 500, we can see that
missing data is evenly distributed in the plot S1-1 and S2-1, while the missing data tends to locate in the bottom-left cor-
ner in S1-2 and S2-2. For brevity, we do not show the figures in our paper. Based on all the above settings, we want to
investigate the following problems by conducting numerical investigations. Here we choose the sample size as 500 and
the Monte-Carlo sample size as 200.

1. We compared the estimation accuracy and efficiency of AFI and its competitors CC, IPW, MI, FI estimates under all
different settings and cases. We choose M1 = M2 = 10 in AFI, m = 10 in MI and M = 20 in FI.

Algorithm 1

AFI Algorithm

Step 1: Quantile regression with complete data on a fine grid of quantile levels
0< τ1 < � � �< τk < � � �< τkn <1.
Step 2: Calculate the inverse probability weights based on complete data.
Step 3: Model the conditional density f(x| z) and f(x j y, z) parametrically as f(x| z, η1) and f(x j y, z, η2),
and estimate η1 and η2 based on the complete data.
Step 4: Simulate M1 x from the estimated f xjz, η̂1ð Þ for each missing xi, 1≤ i≤n1.
Step 5: Simulate M2 x from the estimated f x j y,z, η̂2ð Þ for each observed xi, 1≤ i≤n1.
Step 6: Calculate the weights using the model induced density from Step 1, and assemble the weighted
estimating function as in S*n βð Þ to get the final estimator.
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2. To understand the impact of the number of imputations (M1 and M2) in AFI under different settings and cases, we
considered various number of imputation replicates (M1 = M2 = 10, 20, 50) in AFI algorithms.

3. In Setting 3 and 4 under Case 2, to investigate the robustness property of misspecification of either the propensity
score p(δ| z) or the regression function f(x| z), we compared the estimation accuracy and efficiency of the estimates
from AFI and its competitors CC, IPW, MI and FI.

4. To assess the level of uncertainty brought in by estimated weights, we also compared AFI with its counterpart using
true weight calculated from true density f(y j x, z), which we denote as AFIP.

5. Under all the settings, we compared the computing times of all the imputation methods with various number of
imputation replicates (M1 = M2 = 10, 20, 50). In addition, we choose m = 10 in MI and M = 20 in FI.

Therefore, we need to carry out the following numerical investigations by comparing AFI with CC, IPW, MI and FI,
in which we choose m = 10 in MI, M = 20 in FI, sample size 500 and Monte-Carlo sample size 200. We denote S1-1-1
as standard normal ei and M1 = M2 = 10 in AFI under Case 1, S1-1-2 as standard normal ei and M1 = M2 = 20 in AFI
under Case 1, S1-1-3 as standard normal ei and M1 = M2 = 50 in AFI under Case 1, S1-2-1 as chi-square ei and
M1 = M2 = 10 in AFI under Case 1, S1-2-2 as chi-square ei and M1 = M2 = 20 in AFI under Case 1, S1-2-3 as chi-square
ei and M1 = M2 = 50 in AFI under Case 1. We denote S2-1-1, S2-1-2, S2-1-3, S2-2-1, S2-2-2 and S2-2-3 as the counter-
parts of above settings under Case 2. In S3, we compare misspecified regression function with correct function with
standard normal or chi-square ei, M1 = M2 = 10 in AFI under Case 2. In S4, we compare misspecified propensity score
function and correct function with standard normal or chi-square ei, M1 = M2 = 10 in AFI under Case 2.

Our inference comparisons are in terms of magnitude of mean biases in estimators (M.B.), standard errors of the
estimators (S.E.) and mean squared errors (M.S.E.) across 200 replications based on the bootstrap method. The bench-
mark results are based on the fully observed data with no missing values under the above missing data settings. We dis-
play the simulation results at quantile levels τ = 0.1 and 0.5 in our paper for brevity.

3.2 | Results

3.2.1 | Estimation under fully observed data

Table 1 displays the benchmark results where data are fully observed with no missing values. Under all the models and
settings, the results show that no biases of any substantial magnitude are exhibited, and both variances and mean
squared errors perform well. As expected, the benchmark results using fully observed data are the most accurate, and
the accuracy of estimators across all performance dimensions getting worse when covariates are missing.

3.2.2 | Comparisons of estimation accuracy and efficiency

Tables 2 to 4 display the mean biases, standard errors and mean squared errors of the estimated coefficients under S1
and S2, using CC, IPW, MI, FI, AFI and AFIP. It should be noted that, although there do not exist differences in models,

TABLE 1 Mean biases (M.B.), standard errors (S.E.) and mean squared errors (M.S.E.) of the estimated coefficients using quantile

regression at quantile levels 0.1 and 0.5 under fully observed data with sample size 500 and 200 Monte-Carlo replicates

Case 1 with normal ei Case 1 with chi-square ei Case 2 with normal ei Case 2 with chi-square ei

τ 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

M.B. β̂1 0.01 0.01 0.00 0.00 0.05 0.03 0.00 −0.02

β̂2 −0.01 −0.01 0.00 0.01 −0.03 −0.02 0.00 0.03

S.E. β̂1 0.09 0.07 0.01 0.06 0.33 0.26 0.02 0.20

β̂2 0.09 0.07 0.01 0.05 0.34 0.25 0.02 0.20

M.S.E. β̂1 0.01 0.01 0.00 0.00 0.11 0.07 0.00 0.04

β̂2 0.01 0.01 0.00 0.00 0.12 0.06 0.00 0.04

Note: Case 1, model (7) can be written as yi = β0 + β1xi + β2zi + ei; Case 2, model (7) can be written as yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei.
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settings and assumptions among CC, IPW, MI and FI no matter which value A equals, we want to compare the perfor-
mances between different AFI and other methods under all settings. Therefore, we run CC, IPW, MI and FI under each
S1-1-A, S1-2-A, S2-1-A and S2-2-A (where A = 1, 2 and 3, respectively) and display the results in Tables 2 to 4.

The upper half of Table 2 displays the mean biases of the estimated coefficients under S1, and the bottom half shows
standard errors. All six methods are nearly unbiased and efficient. The structure of Table 3, which is under S2, is the
same as Table 2. Different from S1, S2 represents model (7) with heteroscedastic errors (Case 2). Under S2-1-1, S2-1-2
and S2-1-3, MI, FI, AFI and AFIP yield relatively smaller biases than CC and IPW at quantile levels 0.1 and 0.5. Under
S2-2-1, S2-2-2 and S2-2-3, the estimates from the six methods are nearly comparable in their biases at quantile level 0.1,
while both CC and IPW slightly outperform the other methods for x's estimated coefficients and perform worse for z's
estimated coefficients at quantile level 0.5. As expected from the theory, the variances of IPW estimators are larger than
other estimators except S2-2-1, S2-2-2 and S2-2-3 at quantile level 0.1, in which settings all the six methods are fairly
comparable. In addition, the variances of CC estimators are similar to IPW. In Table 4, the upper half displays the mean
squared errors under S1, while the bottom half shows those under S2. Under S1, the mean squared errors of all six
methods nearly equal 0.00. Under S2, MI, FI, AFI and AFIP are nearly comparable under all settings and perform better
than both CC and IPW except S2-2-1, S2-2-2 and S2-2-3 at quantile level 0.1 (all equal 0.00).

TABLE 2 Mean biases (M.B.) and standard errors (S.E.) of the estimated coefficients using CC, IPW, MI, FI, AFI, and AFIP at quantile

levels 0.1 and 0.5 under the setting S1 with sample size 500 and 200 Monte-Carlo replicates

S1-1-1 S1-1-2 S1-1-3 S1-2-1 S1-2-2 S1-2-3

τ 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

M.B. β̂1,CC 0.01 0.01 0.01 0.01 0.01 0.01 0.00 −0.01 0.00 −0.01 0.00 −0.01

β̂1,IPW 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

β̂1,MI −0.01 0.01 −0.01 0.01 −0.01 0.01 0.00 −0.02 0.00 −0.02 0.00 −0.02

β̂1,FI −0.02 0.00 −0.02 0.00 −0.02 0.00 0.00 −0.03 0.00 −0.03 0.00 −0.03

β̂1,AFI −0.02 −0.01 −0.02 0.00 −0.01 0.00 0.00 −0.03 0.00 −0.02 0.00 −0.02

β̂1,AFIP −0.02 −0.01 −0.01 0.00 −0.01 0.00 0.00 −0.04 0.00 −0.02 0.00 −0.02

β̂2,CC −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 0.00 0.02 0.00 0.02 0.00 0.02

β̂2,IPW −0.01 0.00 −0.01 0.00 −0.01 0.00 0.00 0.02 0.00 0.02 0.00 0.02

β̂2,MI −0.02 −0.01 −0.02 −0.01 −0.02 −0.01 0.00 0.01 0.00 0.01 0.00 0.01

β̂2,FI −0.01 0.00 −0.01 0.00 −0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

β̂2,AFI 0.00 0.00 −0.01 0.00 −0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01

β̂2,AFIP 0.00 0.01 −0.01 0.00 −0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01

S.E. β̂1,CC 0.10 0.08 0.10 0.08 0.10 0.08 0.01 0.07 0.01 0.07 0.01 0.07

β̂1,IPW 0.10 0.08 0.10 0.08 0.10 0.08 0.01 0.07 0.01 0.07 0.01 0.07

β̂1,MI 0.10 0.07 0.10 0.07 0.10 0.07 0.01 0.07 0.01 0.07 0.01 0.07

β̂1,FI 0.10 0.08 0.10 0.08 0.10 0.08 0.01 0.07 0.01 0.07 0.01 0.07

β̂1,AFI 0.10 0.07 0.10 0.08 0.10 0.07 0.01 0.07 0.01 0.06 0.01 0.07

β̂1,AFIP 0.10 0.07 0.10 0.07 0.10 0.07 0.01 0.06 0.01 0.06 0.01 0.07

β̂2,CC 0.13 0.09 0.13 0.09 0.13 0.09 0.01 0.08 0.01 0.08 0.01 0.08

β̂2,IPW 0.13 0.09 0.13 0.09 0.13 0.09 0.01 0.08 0.01 0.08 0.01 0.08

β̂2,MI 0.12 0.08 0.12 0.08 0.12 0.08 0.01 0.07 0.01 0.07 0.01 0.07

β̂2,FI 0.12 0.08 0.12 0.08 0.12 0.08 0.01 0.07 0.01 0.07 0.01 0.07

β̂2,AFI 0.11 0.08 0.12 0.08 0.12 0.08 0.01 0.06 0.01 0.07 0.01 0.07

β̂2,AFIP 0.12 0.08 0.12 0.08 0.12 0.08 0.01 0.06 0.01 0.06 0.01 0.07

Note: All the estimates are under Case 1: yi = β0 + β1xi + β2zi + ei. S1-1-1, M1 = M2 = 10 in AFI and AFIP with normal ei; S1-1-2,
M1 = M2 = 20 in AFI and AFIP with normal ei; S1-1-3, M1 = M2 = 50 in AFI and AFIP with normal ei; S1-2-1, M1 = M2 = 10 in AFI and
AFIP with chi-square ei; S1-2-2, M1 = M2 = 20 in AFI and AFIP with chi-square ei; S1-2-3, M1 = M2 = 50 in AFI and AFIP with chi-square
ei; β̂1,METHOD , the estimated X coefficients using METHOD; β̂2,METHOD , the estimated Z coefficients using METHOD; here METHOD stands
for CC, IPW, MI, FI, AFI or AFIP.
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3.2.3 | The selection of M1 and M2 in AFI

In this subsection, we investigate how the numbers of imputation replicates M1 and M2 affect the estimation accuracy
and computation time of our proposed AFI method. We repeat the AFI estimation in settings S1-1-A, S1-2-A, S2-1-A
and S2-2-A with M1 = M2 = 10 when A = 1, M1 = M2 = 20 when A = 2, M1 = M2 = 50 when A = 3, respectively. (ie,
S1-1-1 stands for M1 = M2 = 10 in under yi = β0 + β1xi + β2zi + ei with normal ei; S1-1-2 stands for M1 = M2 = 20 in
under yi = β0 + β1xi + β2zi + ei with normal ei; S1-1-3 stands for M1 = M2 = 50 in under yi = β0 + β1xi + β2zi + ei with
normal ei; S1-2-1 stands for M1 = M2 = 10 in yi = β0 + β1xi + β2zi + ei with chi-square ei; S1-2-2 stands for
M1 = M2 = 20 in yi = β0 + β1xi + β2zi + ei with chi-square ei; S1-2-3 stands for M1 = M2 = 50 in
yi = β0 + β1xi + β2zi + ei with chi-square ei; S2-1-1 stands for M1 = M2 = 10 in yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei
with normal ei; S2-1-2 stands for M1 = M2 = 20 in yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei with normal ei; S2-1-3 stands
for M1 = M2 = 50 in yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei with normal ei; S2-2-1 stands for M1 = M2 = 10 in
yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei with chi-square ei; S2-2-2 stands for M1 = M2 = 20 in

TABLE 3 Mean Biases (M.B.) and Standard Errors (S.E.) of the estimated coefficients using CC, IPW, MI, FI, AFI, and AFIP at quantile

levels 0.1 and 0.5 under the setting S2 with sample size 500 and 200 Monte-Carlo replicates

S2-1-1 S2-1-2 S2-1-3 S2-2-1 S2-2-2 S2-2-3

τ 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

M.B. β̂1,CC 0.05 0.04 0.05 0.04 0.05 0.04 0.00 −0.02 0.00 −0.02 0.00 −0.02

β̂1,IPW 0.04 0.04 0.04 0.04 0.04 0.04 0.00 −0.03 0.00 −0.03 0.00 −0.03

β̂1,MI 0.03 0.03 0.03 0.03 0.03 0.03 −0.02 −0.07 −0.02 −0.07 −0.02 −0.07

β̂1,FI 0.02 0.02 0.02 0.02 0.02 0.02 −0.01 −0.07 −0.01 −0.07 −0.01 −0.07

β̂1,AFI 0.01 0.01 0.02 0.01 0.01 0.02 −0.01 −0.08 −0.01 −0.07 −0.01 −0.06

β̂1,AFIP 0.01 0.01 0.02 0.02 0.02 0.03 −0.01 −0.08 −0.01 −0.07 −0.01 −0.06

β̂2,CC −0.04 −0.03 −0.04 −0.03 −0.04 −0.03 0.01 0.08 0.01 0.08 0.01 0.08

β̂2,IPW −0.06 −0.02 −0.06 −0.02 −0.06 −0.02 0.00 0.09 0.00 0.09 0.00 0.09

β̂2,MI −0.02 −0.02 −0.02 −0.02 −0.02 −0.02 0.02 0.07 0.02 0.07 0.02 0.07

β̂2,FI −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 0.02 0.06 0.02 0.06 0.02 0.06

β̂2,AFI −0.02 0.00 −0.02 0.00 −0.02 −0.01 0.02 0.06 0.01 0.06 0.01 0.06

β̂2,AFIP −0.01 0.00 −0.02 −0.01 −0.02 −0.01 0.02 0.06 0.01 0.06 0.01 0.06

S.E. β̂1,CC 0.42 0.32 0.42 0.32 0.42 0.32 0.02 0.27 0.02 0.27 0.02 0.27

β̂1,IPW 0.40 0.31 0.40 0.31 0.40 0.31 0.02 0.27 0.02 0.27 0.02 0.27

β̂1,MI 0.37 0.29 0.37 0.29 0.37 0.29 0.04 0.25 0.04 0.25 0.04 0.25

β̂1,FI 0.38 0.30 0.38 0.30 0.38 0.30 0.03 0.24 0.03 0.24 0.03 0.24

β̂1,AFI 0.37 0.29 0.38 0.29 0.38 0.29 0.02 0.24 0.03 0.24 0.03 0.25

β̂1,AFIP 0.38 0.29 0.38 0.30 0.38 0.30 0.02 0.24 0.02 0.25 0.03 0.25

β̂2,CC 0.57 0.39 0.57 0.39 0.57 0.39 0.03 0.35 0.03 0.35 0.03 0.35

β̂2,IPW 0.56 0.39 0.56 0.39 0.56 0.39 0.03 0.35 0.03 0.35 0.03 0.35

β̂2,MI 0.35 0.27 0.35 0.27 0.35 0.27 0.06 0.25 0.06 0.25 0.06 0.25

β̂2,FI 0.35 0.27 0.35 0.27 0.35 0.27 0.04 0.24 0.04 0.24 0.04 0.24

β̂2,AFI 0.36 0.27 0.36 0.27 0.36 0.27 0.04 0.23 0.04 0.24 0.03 0.24

β̂2,AFIP 0.36 0.27 0.36 0.27 0.36 0.27 0.04 0.23 0.04 0.24 0.04 0.24

Note: All the estimates are under Case 2: yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei. S2-1-1, M1 = M2 = 10 in AFI and AFIP with normal ei;
S2-1-2, M1 = M2 = 20 in AFI and AFIP with normal ei; S2-1-3, M1 = M2 = 50 in AFI and AFIP with normal ei; S2-2-1, M1 = M2 = 10 in AFI
and AFIP with chi-square ei; S2-2-2, M1 = M2 = 20 in AFI and AFIP with chi-square ei; S2-2-3, M1 = M2 = 50 in AFI and AFIP with chi-
square ei; β̂1,METHOD, the estimated X coefficients using METHOD; β̂2,METHOD, the estimated Z coefficients using METHOD; here METHOD
stands for CC, IPW, MI, FI, AFI or AFIP.
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yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei with chi-square ei; S2-2-3 stands for M1 = M2 = 50 in
yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei with chi-square ei.)

Tables 2 to 4 display the resulting mean biases, standard errors and mean squared errors of the estimated AFI and AFIP
coefficients with different M1 and M2 at quantile levels 0.1 and 0.5. We found that, when M1 and M2 increases, the mean
biases, standard errors and mean squared errors remain nearly unchanged. Small values of M1 and M2 (equal 10) are suffi-
cient to stabilize the estimated coefficients. BiggerM1 andM2 do not further improve the accuracy in our simulations.

3.2.4 | Comparison of computing time

Table 5 displays the average computing time from 200 Monte-Carlo simulations under all settings (Seconds), using CC,
IPW, MI, FI and AFI. It should be noted that, there exists only one variable to represent the number of imputation rep-
licates in both MI (ie, m) and FI (ie, M), while there exist two in AFI (ie, M1 and M2).

TABLE 4 Mean Squared Errors (M.S.E.) of the estimated coefficients using CC, IPW, MI, FI, AFI, and AFIP at quantile levels 0.1 and

0.5 under the setting S1 and S2 with sample size 500 and 200 Monte-Carlo replicates

1–1 1–2 1–3 2–1 2–2 2–3

τ 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

S1 β̂1,CC 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

β̂1,IPW 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

β̂1,MI 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01

β̂1,FI 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01

β̂1,AFI 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01

β̂1,AFIP 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01

β̂2,CC 0.02 0.01 0.02 0.01 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.01

β̂2,IPW 0.02 0.01 0.02 0.01 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.01

β̂2,MI 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01

β̂2,FI 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

β̂2,AFI 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

β̂2,AFIP 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01

S2 β̂1,CC 0.18 0.10 0.18 0.10 0.18 0.10 0.00 0.07 0.00 0.07 0.00 0.07

β̂1,IPW 0.16 0.10 0.16 0.10 0.16 0.10 0.00 0.07 0.00 0.07 0.00 0.07

β̂1,MI 0.14 0.09 0.14 0.09 0.14 0.09 0.00 0.07 0.00 0.07 0.00 0.07

β̂1,FI 0.14 0.09 0.14 0.09 0.14 0.09 0.00 0.06 0.00 0.06 0.00 0.06

β̂1,AFI 0.14 0.08 0.14 0.09 0.14 0.09 0.00 0.06 0.00 0.06 0.00 0.06

β̂1,AFIP 0.14 0.09 0.15 0.09 0.14 0.09 0.00 0.06 0.00 0.07 0.00 0.07

β̂2,CC 0.33 0.15 0.33 0.15 0.33 0.15 0.00 0.13 0.00 0.13 0.00 0.13

β̂2,IPW 0.32 0.15 0.32 0.15 0.32 0.15 0.00 0.13 0.00 0.13 0.00 0.13

β̂2,MI 0.12 0.07 0.12 0.07 0.12 0.07 0.00 0.07 0.00 0.07 0.00 0.07

β̂2,FI 0.13 0.07 0.13 0.07 0.13 0.07 0.00 0.06 0.00 0.06 0.00 0.06

β̂2,AFI 0.13 0.07 0.13 0.07 0.13 0.08 0.00 0.06 0.00 0.06 0.00 0.06

β̂2,AFIP 0.13 0.07 0.13 0.08 0.13 0.07 0.00 0.06 0.00 0.06 0.00 0.06

Note: S1, estimates under Case 1: yi = β0 + β1xi + β2zi + ei; S2, estimates under Case 2: yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei. 1-1,
M1 = M2 = 10 in AFI and AFIP with normal ei; 1-2, M1 = M2 = 20 in AFI and AFIP with normal ei; 1-3, M1 = M2 = 50 in AFI and AFIP
with normal ei; 2-1, M1 = M2 = 10 in AFI and AFIP with chi-square ei; 2-2, M1 = M2 = 20 in AFI and AFIP with chi-square ei; 2-3,
M1 = M2 = 50 in AFI and AFIP with chi-square ei; β̂1,METHOD, the estimated X coefficients using METHOD; β̂2,METHOD, the estimated Z coeffi-
cients using METHOD; here METHOD stands for CC, IPW, MI, FI, AFI or AFIP.
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Under S1-1, the average computing times of AFI (M1 = M2 = 10), AFI (M1 = M2 = 20) and AFI (M1 = M2 = 50)
are 1.61, 3.50 and 9.26 seconds, respectively. With the M1 and M2 increased from 10 to 20 and from 20 to 50, the latter
AFI costs nearly double computing time of the former. The average computing time of MI is 7.35 seconds, which cost
more than 10 times of FIs (M = 20) computing time (Cheng et al 2018). MI costs more than twice as much as AFI
(M1 = M2 = 20) and nearly five times as much as AFI (M1 = M2 = 10). AFI (M1 = M2 = 10) costs nearly two times of
FI. These conclusions can also be confirmed in S1-2, S2-1 and S2-2. Based on all these settings, the proposed AFI
(M1 = M2 = 10) almost costs only one fifth of MI's average computing time. It concludes that AFI (M1 = M2 = 10 or
20) is able to greatly relieve the computation burden in MI algorithm.

3.2.5 | Estimation robustness

In this subsection, we investigate the robustness property of our proposed AFI when the regression function f(x| z)
(Table 6) or propensity score function p(δi| zi) (Table 7) is misspecified.

On the basis of Table 6, the standard errors and mean squared errors from the AFI and AFIP estimators with the
misspecified f(x| z) are nearly the smallest, especially when the ei is normal for all the estimated coefficients and ei is
chi-square for x's estimated coefficients. More exactly, our AFI and AFIP are comparable with the existing MI and FI
when f(x| z) is misspecified, but better than CC and IPW in both standard errors and mean squared errors except z's
estimated coefficients when ei is chi-square. Compared with S2-1-1 and S2-2-1 in Tables 3 and 4 when f(x| z) is correct,
the difference between the AFI estimators using correct and misspecified densities are small relative to their standard
errors, indicating that the AFI estimator is also fairly robust against the misspecification of f(x| z).

Table 7 displays the results of S4 when the propensity score function p(δi| zi) (Table 7) is misspecified. As expected,
AFI performs better than IPW in mean biases, standard errors and mean squared errors when the ei is normal. When ei
is chi-square, both standard errors and mean squared errors of AFI are smaller than IPW at quantile level 0.5. Com-
pared with S2-1-1 and S2-2-1 in Tables 3and 4 when p(δi| zi) is correct, the difference between the AFI estimators using
correct and misspecified propensity score function are small relative to their standard errors, indicating that the AFI
estimator is also fairly robust against the misspecification of p(δi| zi).

4 | APPLICATION TO REAL DATA STUDY

In this section, we illustrate the performance of our AFI method using part of the Examination Data from National
Health and Nutrition Examination Survey (NHANES) 2015-2016, which is a program of studies designed to assess the
health and nutritional status of adults and children in the United States. In these data, we find that Upper Leg Length

TABLE 5 Average computing time

from 200 Monte-Carlo simulations

under all settings (Seconds)

S1-1 S1-2 S2-1 S2-2

CC 0.01 0.01 0.01 0.01

IPW 0.02 0.02 0.01 0.01

MI(m = 10) 7.35 6.79 5.44 5.36

FI(M = 20) 0.74 0.69 0.50 0.49

AFI(M1 = M2 = 10) 1.61(S1-1-1) 1.39(S1-2-1) 1.04(S2-1-1) 1.03(S2-2-1)

AFI(M1 = M2 = 20) 3.50(S1-1-2) 3.91(S1-2-2) 2.14(S2-1-2) 2.17(S2-2-2)

AFI(M1 = M2 = 50) 9.26(S1-1-3) 8.08(S1-2-3) 7.21(S2-1-3) 7.34(S2-2-3)

Note: S1-1, estimates under yi = β0 + β1xi + β2zi + ei with normal ei; S1-2, estimates under
yi = β0 + β1xi + β2zi + ei with chi-square ei; S2-1, estimates under
yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei with normal ei; S2-2, estimates under
yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei with chi-square ei; S1-1-1, M1 = M2 = 10 in S1-1; S1-1-2,
M1 = M2 = 20 in S1-1; S1-1-3, M1 = M2 = 50 in S1-1; S1-2-1, M1 = M2 = 10 in S1-2; S1-2-2,
M1 = M2 = 20 in S1-2; S1-2-3, M1 = M2 = 50 in S1-2; S2-1-1, M1 = M2 = 10 in S2-1; S2-1-2,
M1 = M2 = 20 in S2-1; S2-1-3, M1 = M2 = 50 in S2-1; S2-2-1, M1M1 = M2 = 10 in S2-2; S2-2-2,
M1 = M2 = 20 in S2-2; S2-2-3, M1 = M2 = 50 in S2-2.
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(BMXLEG), Upper Arm Length (BMXARML), Arm Circumference (BMXARMC), Waist Circumference (BMXWAIST)
and Average Sagittal Abdominal Diameter (BMDAVSAD) are relatively highly correlated with Standing Height
(BMXHT). The correlation coefficients are 0.805, 0.891, 0.545, 0.453 and 0.410 respectively. Thus we build a model with
yi being BMXHT for the ith person, xi,1 being BMDAVSAD, xi,2 being BMXLEG, xi,3 being BMXARML, xi,4 being
BMXARMC and xi, 5 being BMXWAIST. Considering the the distributions of the variables are commonly skewed, we
use quantile regression and the model can be written as

yi = β0,τ + β1,τxi,1 + β2,τxi,2 + β3,τxi,3 + β4,τxi,4 + β5,τxi,5 + ei: ð8Þ

We use 200 bootstraps among 721 subjects. The covariate xi,1 (BMDAVSAD) is missing (the missing rate is about
20.83%), while other covariates are completely observed. Here we apply CC, IPW, MI, FI, AFI to obtain the estimated
coefficients βi, τ, i = 1, …, n, with x as BMDAVSAD, and z as BMXLEG, BMXARML, BMXARMC and BMXWAIST. We

TABLE 6 Mean biases (M.B.), standard errors (S.E.) and mean squared errors (M.S.E.) of the estimated coefficients using CC, IPW, MI,

FI, AFI, and AFIP at quantile levels 0.1 and 0.5 under S3 with sample size 500 and 200 Monte-Carlo replicates

Normal ei Chi-square ei

M.B. S.E. M.S.E. M.B. S.E. M.S.E.

τ 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

β̂1,CC −0.03 −0.03 0.50 0.39 0.25 0.15 0.00 0.00 0.03 0.31 0.00 0.10

β̂1,IPW −0.04 −0.03 0.52 0.38 0.27 0.15 0.00 0.00 0.03 0.31 0.00 0.10

β̂1,MI −0.06 −0.04 0.48 0.36 0.24 0.13 −0.01 −0.04 0.03 0.29 0.00 0.09

β̂1,FI −0.04 −0.05 0.49 0.36 0.25 0.13 −0.01 −0.05 0.03 0.29 0.00 0.09

β̂1,AFI −0.05 −0.04 0.48 0.36 0.23 0.13 −0.01 −0.05 0.03 0.29 0.00 0.09

β̂1,AFIP −0.05 −0.04 0.48 0.36 0.24 0.13 −0.01 −0.05 0.03 0.28 0.00 0.08

β̂2,CC 0.00 −0.01 0.53 0.36 0.28 0.13 0.01 0.00 0.03 0.27 0.00 0.08

β̂2,IPW 0.00 −0.02 0.53 0.35 0.28 0.13 0.01 0.00 0.03 0.27 0.00 0.07

β̂2,MI 0.00 0.00 0.50 0.35 0.25 0.12 0.02 0.04 0.03 0.28 0.00 0.08

β̂2,FI 0.00 0.01 0.51 0.34 0.26 0.12 0.02 0.04 0.03 0.28 0.00 0.08

β̂2,AFI −0.01 0.01 0.50 0.34 0.25 0.12 0.02 0.04 0.03 0.27 0.00 0.08

β̂2,AFIP 0.00 0.01 0.50 0.34 0.25 0.12 0.02 0.04 0.03 0.28 0.00 0.08

Note: S3, misspecified regression function f(x| z) under yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei and M1 = M2 = 10 in AFI; β̂1,METHOD , the esti-
mated X coefficients using METHOD; β̂2,METHOD , the estimated Z coefficients using METHOD; here METHOD stands for CC, IPW, MI, FI,
AFI, or AFIP.

TABLE 7 Mean Biases (M.B.), Standard Errors (S.E.) and Mean squared Errors (M.S.E.) of the estimated coefficients using CC, IPW,

MI, FI, AFI, and AFIP at quantile levels 0.1 and 0.5 under S4 with sample size 500 and 200 Monte-Carlo replicates

Normal ei Chi-square ei

M.B. S.E. M.S.E. M.B. S.E. M.S.E.

τ 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

β̂1,IPW 0.05 0.04 0.42 0.32 0.18 0.10 0.00 −0.02 0.02 0.27 0.00 0.07

β̂1,AFI 0.01 0.00 0.39 0.29 0.15 0.08 −0.02 −0.09 0.03 0.24 0.00 0.06

β̂2,IPW −0.04 −0.03 0.57 0.39 0.33 0.15 0.01 0.08 0.03 0.35 0.00 0.13

β̂2,AFI 0.00 0.01 0.35 0.27 0.12 0.07 0.02 0.06 0.04 0.23 0.00 0.06

Note: S4, misspecified propensity score function p(δi| zi) under yi = β0 + β1xi + β2zi + (0.5xi + 0.5zi)ei and M1 = M2 = 10 in AFI; β̂1,METHOD ,
the estimated X coefficients using METHOD; β̂2,METHOD, the estimated Z coefficients using METHOD; here METHOD stands for IPW or AFI.
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set m = 10 in MI, M = 20 in FI and M1 = M2 = 10 in AFI. To illustrate the improved efficiency from AFI, we calculated
the relative efficiencies of different methods relative to CC. The estimated coefficients, standard errors and relative effi-
ciencies from different approaches at quantile levels 0.1 and 0.5 are listed in Table 8.

Table 8 consists of five layers. Each layer represents one estimator, including the estimated coefficients (raw estima-
tion) before bootstrap, standard errors from 200 bootstraps and P-value. In addition, we also list the relative efficiency
comparing to the CC estimates for the latter four layers. Based on Table 8, we find that almost all the imputation
methods (IPW, MI, FI and AFI) have smaller estimated standard errors than the CC and IPW estimates. These are
expected as both of CC and IPW only use the completely observed data. Figure 1 displays raw estimation and standard
errors of the estimated coefficients.

We also calculate average computing times (ACT) of five imputation approaches from 200 bootstraps based on
721 subjects (Seconds). We find that AFI (1.51 seconds) is much more faster than MI (4.62 seconds). On average, CC,
IPW and FI cost less than 1 second (0.01, 0.01, and 0.53 second) for each estimation process. Thus in our real data, AFI's
average computing time is about 32.68% of MI's.

5 | DISCUSSION

In many applications, some observations could be missing for various reasons.20,21 Ignoring the missing data will under-
mine study efficiency, and sometimes introduce substantial bias. Based on model (2), there already existed many related
investigation works.22-26 In our paper, we propose an augmented inverse probability weighted fractional imputation
method (AFI) to handle missing covariates in quantile regression. The proposed AFI has the following advantages com-
pared with the existing methods: 1) More efficient because making fully use of information not only from complete
observations such as CC and IPW; 2) More robust to the misspecification of either the propensity score or the regression

TABLE 8 Raw estimation before bootstrap (Raw) and standard errors (S.E.), relative efficiencies (R.E.), p value from 200 bootstraps of

the estimated coefficients in model (8)

BMDAVSAD BMXLEG BMXARML BMXARMC BMXWAIST

0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

CC Raw −0.31 −0.24 0.99 1.26 2.64 2.24 −0.01 −0.13 0.02 0.09

S.E. 0.33 0.22 0.16 0.10 0.19 0.15 0.14 0.12 0.08 0.06

P 0.34 0.29 0.00 0.00 0.00 0.00 0.92 0.28 0.79 0.11

IPW Raw −0.19 −0.29 1.03 1.24 2.52 2.21 0.01 −0.20 0.01 0.15

S.E. 0.32 0.21 0.15 0.10 0.18 0.16 0.16 0.12 0.08 0.05

P 0.56 0.17 0.00 0.00 0.00 0.00 0.93 0.10 0.93 0.00

R.E.(%) 102 104 106 103 108 96 92 99 102 118

MI Raw −0.27 −0.32 1.07 1.28 2.54 2.19 −0.13 −0.24 0.06 0.15

S.E. 0.32 0.22 0.14 0.08 0.19 0.12 0.13 0.09 0.08 0.05

P 0.39 0.15 0.00 0.00 0.00 0.00 0.31 0.01 0.48 0.00

R.E.(%) 104 102 115 128 99 128 109 131 106 112

FI Raw −0.31 −0.32 1.07 1.28 2.50 2.19 −0.08 −0.25 0.06 0.16

S.E. 0.31 0.21 0.14 0.08 0.19 0.12 0.13 0.09 0.08 0.05

P 0.33 0.13 0.00 0.00 0.00 0.00 0.54 0.01 0.47 0.00

R.E.(%) 106 104 116 126 100 125 107 131 107 113

AFI Raw −0.27 −0.34 1.08 1.26 2.45 2.17 −0.10 −0.25 0.07 0.18

S.E. 0.31 0.21 0.14 0.08 0.18 0.13 0.15 0.10 0.08 0.05

P 0.39 0.10 0.00 0.00 0.00 0.00 0.49 0.01 0.39 0.00

R.E.(%) 106 108 116 129 105 122 98 126 103 125

Note: R.E., the ratio between the estimated variances of the CC estimator and the other estimators.
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function; 3) Less computation burden than MI estimator, for example, the proposed AFI (M1 = M2 = 10) almost costs
only one-third to one-fifth of MI's average computing time.

To propose AFI, we investigate its estimating function and divide it into three parts:
Pn1

i=1
1
pi
φτ yi−xTi β −zTi β
� �

,Pn
i= n1 + 1Ex φτ yi−xTi β −zTi β

� �jyi,zi� �
and

Pn1
i=1 1− 1

pi

� 	
Ex φτ yi−xTi β −zTi β

� �jyi,zi� �
. Considering that conditional den-

sity of y given the covariates is unspecified under a typical quantile regression setting and classical likelihood-based
approaches cannot be applied directly, solving missing covariate problem in the quantile regression is challenging. Here
we use IPW for

Pn1
i=1

1
pi
φτ yi−xTi β −zTi β
� �

, bayesian theory and monte-carlo integrations forPn
i= n1 + 1Ex φτ yi−xTi β −zTi β

� �jyi,zi� �
and monte-carlo integrations for

Pn1
i=1 1− 1

pi

� 	
Ex φτ yi−xTi β −zTi β

� �jyi,zi� �
. In

addition, we estimate the density function f(x| zi) by maximizing a parametric likelihood over the observed (x, z) and f
(y j x, z) by using the first derivative of the the conditional quantile function Qy(τ j x, z) (Wei et al, 2012).

Based on all the above, we will carry out the following investigation works in the future: (a) We will consider arbi-
trary nonlinear quantile functions instead of only focusing on linear quantile regressions; (b) Until now, all the
methods that we talked about or proposed are parametric. We will consider semiparametric or nonparametric func-
tions27; (c) It is possible to investigate missing data problems based on other kinds of basic model such as varying-
coefficient quantile regression rather than linear quantile regression in our paper.28-30 Therefore, we can carry out lon-
gitudinal data researches and solve missing covariates problems in that context31,32; (d) Last but not least, we will apply
our methods to more real data applications.33-35
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FIGURE 1 Raw estimation and standard errors (S.E.) of the estimated coefficients in Model (8). X1, BMDAVSAD; X2, BMXLEG; X3,

BMXARML; X4, BMXARMC; X5, BMXWAIST
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